طراحی و توسعه آنتولوژی تجربیات مکانی در مسیریابی شهری

نوع مقاله: مقاله پژوهشی فارسی

نویسندگان

1 عضو هیات علمی و استادیار گروه GIS - دانشکده مهندسی نقشه‌برداری- قطب علمی فناوری اطلاعات مکانی، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 دانشکده مهندسی ژئودزی و ژئوماتیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

چکیده- تجربه مکانی، توانایی افراد برای درک روابط بین اشیای دنیای واقعی، فضاها و مناطق است که پس از سال ها یادگیری و تجربه توسط افراد خبره بدست می‌آید. این تجربه که منجر به تولید دانش مکانی می‌شود در اخذ تصمیمات سازمانی با دقت بالا، واقع‌بینانه و هماهنگ با واقعیت کمک می‌کند. از این‌رو، استفاده از روش‌هایی برای ذخیره‌سازی و استفاده مجدد از این تجربه و جلوگیری از خارج شدن آن از سازمان-ها، امروزه به امری مهم و ضروری تبدیل شده است. در این پژوهش روش‌های مختلف مدلسازی تجربیات از جمله استفاده از شبکه‌های معنایی، قانون، منطق و آنتولوژی بررسی می‌شوند و به دلیل برتری روش آنتولوژی نسبت به روش‌های دیگر، این روش به عنوان روش مدلسازی انتخاب و الگوریتمی مبتنی بر آنتولوژی برای ذخیره‌سازی تجربیات مکانی ارائه و در مسیریابی شهری استفاده می‌گردد. بدین منظور، ابتدا یک مدل آنتولوژی با استفاده از داده‌های مربوط به مسیرهای تاکسی شهر تهران ایجاد گردید. سپس این مدل آنتولوژی برای مسیریابی استفاده شد و نتایج آن با الگوریتم کوتاه‌ترین مسیر دایجسترا از نظر طول مسیر و زمان سفر برای زمان اوج ترافیک، مقایسه گردید. نتایج حاصل نشان داد با این‌که طول سفر روش مسیریابی مبتنی بر آنتولوژی تجربیات رانندگان، نسبت به الگوریتم کوتاه‌ترین مسیر دایجسترا، بیشتر است، اما زمان سفر آن کمتر است و در برخی مسیرها اختلاف زمان سفر آن با الگوریتم کوتاه‌ترین مسیر دایجسترا، به 10 دقیقه نیز می‌رسد.

کلیدواژه‌ها


[1] B., Kamsu-Foguem, and F.H., Abanda, “Experience modeling with graphs encoded knowledge for construction industry”, Computers in Industry70, pp.79-88, 2015.

[2] M.H., Abel,  “Knowledge map-based web platform to facilitate organizational learning return of experiences”, Computers in Human Behavior51, pp.960-966, 2015.

[3] D., Mourtzis, M., Doukas, and C., Giannoulis, “An Inference-based Knowledge Reuse Framework for Historical Product and Production Information Retrieval”, Procedia CIRP41, pp.472-477, 2016.

[4]P.P., Ruiz, B.K., Foguem, and B., Grabot, “Generating knowledge in maintenance from Experience Feedback. Knowledge-Based Systems”, 68, pp.4-20, 2014.

[5] W.L., Mikos, J.C.,  Ferreira, P.E., Botura, and L.S., Freitas, “A system for distributed sharing and reuse of design and manufacturing knowledge in the PFMEA domain using a description logics-based ontology”, Journal of Manufacturing Systems30(3), pp.133-143, 2011.

[6] K., Efthymiou, K., Sipsas, D., Mourtzis, and G., Chryssolouris, “On knowledge reuse for manufacturing systems design and planning: A semantic technology approach”, CIRP Journal of Manufacturing Science and Technology8, pp.1-11, 2015.

[7] S., Moehrle, and W., Raskob, “Structuring and reusing knowledge from historical events for supporting nuclear emergency and remediation management”, Engineering Applications of Artificial Intelligence46, pp.303-311, 2015.

[8] B.K., Foguem, T., Coudert, C. Béler, and L., Geneste, “Knowledge formalization in experience feedback processes: An ontology-based approach”, Computers in Industry59(7), pp.694-710, 2008.

[9] R.S., Renu, and G., Mocko, “Computing similarity of text-based assembly processes for knowledge retrieval and reuse”, Journal of Manufacturing Systems39, pp.101-110, 2016.

[10] E.R., Reyes, S., Negny, G.C. Robles, and J.M., Le Lann, “Improvement of online adaptation knowledge acquisition and reuse in case-based reasoning: Application to process engineering design”, Engineering Applications of Artificial Intelligence41, pp.1-16, 2015.

[11] Y., Hu, K., Janowicz, D., Carral, S., Scheider, W., Kuhn, G., Berg-Cross, P., Hitzler, M. Dean, and D., Kolas, September. “A geo-ontology design pattern for semantic trajectories”, In International Conference on Spatial Information Theory, pp. 438-456. Springer International Publishing, 2013.

[12] M., Effati, and A., Sadeghi Niaraki, “A semantic based classification and regression tree approach for modelling complex spatial rules in motor vehicle crashes domain”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery5(4), pp.181-194,2015.

[13] M., Baglioni, J., Macedo, C., Renso, and M., Wachowicz, “An ontology-based approach for the semantic modelling and reasoning on trajectories”, In International Conference on Conceptual Modeling, pp. 344-353, Springer Berlin Heidelberg, 2008.

[14] U., Durak, H., OǦUZTÜZÜN, and S.K., Ider, “Ontology-based domain engineering for trajectory simulation reuse”, International Journal of Software Engineering and Knowledge Engineering, vol. 19(08), pp.1109-1129, 2009.

[15] E., Camossi, P. Villa, and L., Mazzola, “Semantic-based anomalous pattern discovery in moving object trajectories”, arXiv preprint arXiv:1305.1946, 2013.

[16] R., Wannous, J., Malki, A., Bouju, and C., Vincent, “Modelling mobile object activities based on trajectory ontology rules considering spatial relationship rules”, In Modeling approaches and algorithms for advanced computer applications, pp. 249-258, Springer International Publishing, 2013.

[17] T., Malgundkar, M.Rao, and S.S., Mantha, “GIS driven urban traffic analysis based on ontology”, International Journal of Managing Information Technology, vol. 4(1), pp.15, 2012.

[18] A., Sadeghi-Niaraki, A., Rajabifard, K., Kim, and J., Seo, “Ontology based SDI to facilitate spatially enabled society”, In Proceedings of GSDI 12 World Conference, pp. 19-22, 2010.

[19] A.S. Niaraki, and K., Kim, “Ontology based personalized route planning system using a multi-criteria decision making approach”, Expert Systems with Applications, vol. 36(2), pp.2250-2259, 2009.

[20] S., Saeedi, N., El-Sheimy, M. Malek, and N., Samani, “June. An ontology based context modeling approach for mobile touring and navigation system”, In Proceedings of the The 2010 Canadian Geomatics Conference and Symposium of Commission I, ISPRS Convergence in Geomatics–Shaping Canada’s Competitive Landscape, Calgary, Canada, pp. 15-18, 2010.

[21] G.S., Stephan, H.S., Pascal, and A.S., Andreas, “Knowledge representation and ontologies”, Springer Berlin Heidelberg, pp. 51-105, 2007.

[22] J.F., Sowa, “Knowledge representation: logical, philosophical, and computational foundations”, Pacific Grove: Brooks/Cole, vol. 13, 2000.

[23] J.W., Lloyd, “Foundations of logic programming”, Springer Science & Business Media, 2012. .

[24] J., Minker, “Logic and Databases Past, Present, and Future”, AI Magazine, vol. 18(3), pp. 21, 1997.

[25] T.R., Gruber, “A Translation Approach to Portable Ontology Specification”, Knowledge Acquisition, vol. 5, pp. 199-220, 1993.

[26] C., Roussey, F., Pinet, M.A., Kang, and O., Corcho, “An introduction to ontologies and ontology engineering”, In Ontologies in Urban Development Projects, pp. 9-38. Springer London, 2011.

[27] M.A., Musen, “Dimensions of knowledge sharing and reuse”, Computers and Biomedical Research, vol. 25, pp.435-467, 1992.

[28] N.F., Noy, and D.L., McGuinness, “Ontology development 101: A guide to creating your first ontology”, 2001.

[29] D.L., McGuinness, and J., Wright, “Conceptual Modeling for Configuration: A Description Logic-based Approach”, Artificial Intelligence for Engineering Design, Analysis, and Manufacturing - special issue on Configuration, 1998.

[30] D.L., McGuinness, R., Fikes, J., Rice, and S., Wilder, “An Environment for Merging and Testing Large Ontologies”, Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh International Conference (KR2000). A. G. Cohn, F. Giunchiglia and B. Selman, editors. San Francisco, CA, Morgan Kaufmann Publishers, 2000.

[31] P., Lee, “What's Wrong with Logic Models”, LCSA: Occasional Paper, (1), 2011.

[32] Q., Ni, I., Pau de la Cruz, and A.B., García Hernando, “A foundational ontology-based model for human activity representation in smart homes”, Journal of Ambient Intelligence and Smart Environments, vol. 8(1), pp.47-61, 2016.

[33] B., Smith, “Logic and formal ontology”, In Husserl's Phenomenology: A Textbook,pp. 29-67. Lanham: University Press of America, 1989.

[34] A., Gomez-Perez, “Some ideas and examples to evaluate ontologies”, Knowledge Systems Laboratory, Stanford University, 1994.

[35] A., Gomez-Perez, “Towards a framework to verify knowledge sharing technology”, Expert Systems with Applications, vol.11, no.4, pp.519–529, 1996.

[36] J., Brank, M., Grobelnik, and D., Mladenic, “A survey of ontology evaluation techniques”, Proc. Conf. on Data Mining and Data Warehouses, Ljubljana, Slovenia, 2005.

[37] R., Porzel, and R. Malaka, “A task-based approach for ontology evaluation”, ECAI 2004 Workshop Ont. Learning and Population, 2004.

[38] C., Brewster, H., Alani, S., Dasmahapatra, and Y., Wilks, “Data driven ontology evaluation”, Proceedings of Int. Conf. on Language Resources and Evaluation, Lisbon, pp.641-644, 2004..

[39] A., Lozano-Tello, and A., Gomez-Perez, “Ontometric: a method to choose the appropriate ontology”, Journal of database management, vol.15, no.2, pp.1-18, 2004.