افزایش سرعت نگهداری افزایشی دید در پایگاه‌داده‌تحلیلی با استفاده از الگوریتم فرهنگی

نویسندگان

1 کارشناسی ارشد، گروه کامپیوتر، دانشگاه ازاد اسلامی قزوین، قزوین، ایران

2 استادیار، دانشکده مهندسی کامپیوتر، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

چکیده

در سال‌های اخیر به دلیل استفاده از پایگاه‌داده‌تحلیلی موضوع مربوط به حفظ و نگهداری دید ذخیره شده مورد اهمیت است. برای دسترسی سریع به داده‌ها، پایگاه‌های ‌داده‌تحلیلی، داده‌های لازم را از منابع مختلف جمع‌آوری کرده و به فرم دید ذخیره شده در خود ذخیره می‌کنند. این امر باعث سرعت بالای پایگاه‌داده‌تحلیلی در پاسخ به پرس‌و‌جوها می‌شود. وقتی داده‌ها در منابع مختلف تغییر می‌کنند دیدهای ذخیره شده نیز باید به‌روز‌ شوند که موضوع نگهداری دید مطرح می‌شود. در این زمان ارائه الگوریتم‌هایی به‌منظور نگهداری دید با هزینه بهینه، مطرح می‌شود. الگوریتمی که در این مقاله ارائه می‌شود، ترکیب یک روش ریاضی با الگوریتم فراابتکاری فرهنگی است که باعث کاهش زمان جستجو و بهینه شدن هزینه دسترسی به داده‌ها در پایگاه‌داده‌تحلیلی می‌شود. الگوریتم فرهنگی از یک فضای باور مناسب استفاده می‌کند که شامل چندین رابطه نگهداری افزایشی دید است. هر بار که بهترین پاسخ در انتهای هر نسل به‌دست آید در فضایی به اسم فضای باور ذخیره می‌شود. آزمایش‌ها نشان می‌دهند که الگوریتم فرهنگی در مقایسه با روش‌های قبلی و الگوریتم باکتریال که روش پیشنهادی قبلی ما به این منظور است نیز از سرعت بالاتری به‌منظور به‌روز‌رسانی دید افزایشی برخوردار است.

کلیدواژه‌ها


[1]        J. Zhou, P. Larso, G. Elmongui,“Lazy Maintenance of Materialized Views”,33th International conference on Very Large data bases, Vienna, pp. 231-242, 2007.

[2]        G. Luo, J.F. Naughton, C. Ellmann,M.Watzke, “A comparison of three methods for join view maintenance in parallel RDBMS”, 19th International Conference on Data Engineering, pp. 177-188, 2003.

[3]        X. Zhang, L. Ding, A. Rundensteiner,“Parallel multisource viewmaintenance”, the VLDB Journal, 13(1): 22-48, January 2004.

[4]        M. Koch, “An Applied Data Matching Methodology”, Master's Thesis, University of Kaiserslautern, December 2010.

[5]        T. Palpanas, R. Sidle, R. Cochrane, H. Pirahesh, “Incremental maintenance for non-distributive aggregate functions”, 28th international conference on Very Large Data Bases, pp. 802-813, 2002.

[6]        S. Chen, E.A. Rundensteiner, “GPIVOT: efficient incremental maintenance of complex ROLAP views”, 21th international Conference on Data Engineering, pp. 552-563, 2005.

[7]        Y. Zhuge, H. Garcia, J. Wiener,“Consistency algorithms for multi-source warehouse view maintenance”, Journal of Distributed and Parallel Databases,6(1): 7-40, 1998.

[8]        A. Behrend, T.Jörg ,“Optimized Incremental ETL Jobs for Maintaining Data Warehouses”, IDEAS10, pp. 216-224,2010.

[9]        H. He, , J. Xie J. Yang, H. ,”Asymmetric Batch Incremental View Maintenance”,21st international conference on Data Engineering, pp. 106-117, 2005.

[10]      S. Azarkasb, “Optimization Of Cultural Algorithms  Structure Based On Pareto”, Master’s Thesis, Qazvin Islamic Azad University, Iran, 2012.

[11]      S. Srinivasan, S. Ramakrishnan, “Cultural Algorithm Toolkit for Multi-objective Rule Miniing”, International Journal on Computational Sciences & Applications (IJCSA) 2(4):9-23, August 2012.

[12]      ع. کریمی مصدق، ن. دانشپور، "کاهش هزینه نگهداری افزایشی دید پایگاه‌داده‌تحلیلی با استفاده از الگوریتم‌های فراابتکاری"،. سومین کنفرانس بین المللی اطلاعات،حال و آینده2014.

[13]      K. Yong Lee, J. Hyun Son, M. Kim, “Reducing the cost of accessing relations in incremental view maintenance”, Decision Support Systems, 43(2): 512-526,2007.

[14]      P.Ghosh, S. Se,“Dynamic incrementalmaintenance of materialized view based on attribute affinity”,International Conference on Data Science &Engineering, pp. 12-17, 2014.

[15]      N.Folkert, A.Gupta, A.Witkowski,S.Subrmanian, S. Bellamkonda, S. Shankar, T. Bozgaya, L.Sheng, “OptimisingRefresh of a Set of Materialized View”, Proceedings of the 31stVLDB Conference, Trondheim, Norway, pp. 1043-1054, 2005.

[16]      B. Liu, A. Rundensteiner, D. Finkel.“Maintaining large update batches by restructuring and grouping”, Information Systems, 32(4): 621–639, 2007.

[17]      L.zhou,Q.Shi, H.Geng, “The minimum Incremental Maintenance of Materialized Views in Data Warehouse”, 2nd International Asia Conference on Informatics in Control, pp. 220-223, 2010.

[18]      G. C. H. Yeung,W. Gruver,“Multiagent Immediate Incremental View Maintenance for Data Warehouses”,IEEE Transactions On Systems Man And Cybernetics—Part A Systems And Humans, 35(2): 305-310, 2005.

[19]      Y. Zhuge, H. Garcia-Molina, J. Hammer, J. Widom,“View maintenance in a warehousing environment”, SIGMOD’ 95,  pp. 316-327, 1995.

[20]      Y. Zhuge, H. Garcia-Molina, J. Hammer, J. L. Wiener,“The strobe algorithms for multi-source warehouse consistency”, Fourth International Conference on Parallel and Distributed Information Systems, pp. 146- 157, 1996.

[21]      D. Agrawal, A. E. Abbadi, A Singh, T. Yurek,“Efficient view maintenance at data warehouses”,SIGMOD, pp. 417-427, 1997.

[22]        X.Zhang, L.Yang, D.Wang,“Incremental View Maintenance Based on Data Source Compensation in Data Warehouses”, International Conference on Computer Application and System Modeling,pp. 287-291, 2010.

[23]      B. Qin, S. Wang, X. Du,“EffectiveMaintenance of Materialized Views in Peer Data Management Systems”, First International Conference on Semantics, Knowledge, and Grid,pp. 18, 2005.

[24]      J. Zhou, P. Larson H. G. Elmongui,“Lazy Maintenance of Materialized Views”, 33rd International conference on Very Large data bases, Vienna, Austria, pp. 231-242, 2007.

[25]      Y. Zhuge, H. Garcia-Molina, J. Wiener,“Consistency algorithms for multi-source warehouse view maintenance”, Journal of Distributed and Parallel Databases, pp. 7–40,2007.

[26]      A. Behrend, T. Jörg,“Optimized Incremental ETL Jobs for Maintaining Data Warehouses”, IDEAS, pp. 216-224, 2010.

[27]      A. S.almazyad, m.K. Siddiqui,“Incremental View Maintenance: An Algorithmic Approach”, International Journal of Electrical & Computer Sciences, 10(3): 16-21, 2014.

[28]      X. Jin, H. Liao, “An incremental maintenance method for XQuery materialized view”, Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, pp. 797-801, 2011.

[29]      T. Griffin, L. Libkin,“Incremental maintenance of views with duplicates”, ACM SIGMOD Conference, pp. 328–339, 1995.

[30]      K. Yi, H. Yu, J. Yang, G. Xia, Y. Chen, “Efficient maintenance of materialized top-k views”, ICDE Conference, pp. 189–200, 2003.

[31]      G. Luo, J.F. Naughton, C. Ellmann, M.Watzke, “A comparison of three methods for join view maintenance in parallel RDBMS”, ICDE Conference, pp. 177–188, 2003.

[32]      T. Jörg and S. Dessloch,“View Maintenance using Partial Deltas”, BTW, LNI P – 180, Kaiserslautern, Germany, pp. 287-306, 2011.

[33]      B. Qin, S. Wang, X. Du,“EffectiveMaintenance of Materialized Views in Peer Data Management Systems”, First International Conference on Semantics, Knowledge, and Grid,pp:18, 2005. 

[34]      W. H.Durham, “Genes, Culture, andHuman Diversity”, Stanford UniversityPress, Stanford, California, 1994.

[35]      B.Franklin, M. Bergerman,“Cultural algorithms:concepts and experiments”, Evolutionary Computation, 2: 1245–1251, 2000.

[36]      S. Ahmadi,N.Forouzideh,H.Chung,R.Martin, “First Study of Fuzzy Cognitive Maps learning usingculturalalgorithm”,9th ConferenceonIndustrial Electronics and Applications, pp. 2023-2028,2014.

[37]      X. Benxian,C. Rongbao,L. Cheng,L. Yanhong,“Superheated steam temperature control based-on Cultural based Ant Colony optimization Algorithm for power station boiler”, 32nd Chinese ControlConference(CCC), pp. 7965-7970, 2013.

[38]      A. Buruzs, M. F. Hatwagner, R. C. Pozna, L. T. K6czy,“Advanced Learning of Fuzzy Cognitive Maps of Waste Management by Bacterial Algorithm”, IFSA World Congress and NAFIPS Annual Meeting, pp. 890-895, 2013.

[39]      Y. Yujang, H.Renjie, “A Novel Artificial Bee Colony Algorithm”,Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), 1:271-274, 2014.

[40]      Z. Yang,K. Li, A. Foley,C. Zhang,“A new self-learning TLBOalgorithm for RBF neural modelling of batteries in electric vehicles”,IEEE Congress on Evolutionary Computation (CEC), pp. 2685-2691, 2014.