TLBO-Based Optimal Speed Controller Design for Induction Motors Using Fuzzy Sliding Mode Controller


Faculty of Electrical and Robotic Engineering, Shahrood University of Technology, Shahrood


Teaching-Learning-Based Optimization (TLBO) algorithm is a new optimization technique which has been shown to be competitive to other population-based algorithms. In this paper, TLBO algorithm is employed for speed control of induction motor based on Fuzzy Sliding Mode Controller (FSMC). The proposed control method, namely Optimal Fuzzy SMC (OFSMC), formulates the design of FSMC as an optimization problem. First, a sliding mode speed controller with an integral switching surface is designed, in which the acceleration information for speed control is not required. In this case, the upper bound of the lumped uncertainties including parameter uncertainties and load disturbance must be available. The importance of this parameter regarding the system performance is illustrated. Then, the fuzzy sliding mode speed controller is utilized to estimate the upper bound of the lumped uncertainties. Finally, TLBO algorithm is employed to determine the optimal upper bound of these uncertainties. Simulation results are included to demonstrate that the proposed OFSMC can obtain better quality solution than many existing techniques like Proportional-Integrator (PI), SMC, FSMC and an Adaptive FSMC (AFSMC).   


[1] Z. Al-Hamouza, H. Al-Duwaisha, N. Al-Musabi, Optimal design of a sliding mode AGC controller: Application to a nonlinear interconnected model, Elect. Power Syst. Res. 81 (2011) 1403–1409.
[2] S. Meradia, K. Benmansourb, K. Herizia, M. Tadjinea, M.S. Boucherit, Sliding mode and fault tolerant control for multicellular converter four quadrants, Elect. Power Syst. Res. 95 (2013) 128–139.
[3] E.Y.Y. Ho, P.C. Sen, Control dynamics of speed drive systems using sliding mode controller with integral compensation, IEEE Trans. Ind. Appl. 27 (1991) 883-892.
[4] K.K. Shyu, H.S. Shieh, A new switching surface sliding-mode speed control for induction motor drive systems, IEEE Trans. Power Electron. 11 (1996) 660-667.
[5] W.J. Wang, J.Y. Chen, Passivity-based sliding mode position control for induction motor drives, IEEE Trans. Energy Converg. 20 (2005) 1-10.
[6] R.J. Wai, Fuzzy sliding-mode control using adaptive tuning technique, IEEE Trans. Ind. Electron. 54 (2007) 586-594.
[7] T.O. Kowalska, M. Dybkowski, K. Szabat, Adaptive sliding-mode neuro-fuzzy control of the two-mass induction motor drive without mechanical sensors, IEEE Trans. Ind. Electron. 57 (2010) 553-564.
[8] R.J. Wai, K.H. Su, Adaptive enhanced fuzzy sliding-mode control for electrical servo drive, IEEE Trans. Ind. Electron. 53 (2006) 569-580.
[9] S. Ryvkin, R.S. Obermoeller, A. Steimel, Sliding-mode-based control for a three-level inverter drive, IEEE Trans. Ind. Electron. 55 (2008) 3828-3835.
[10] B.K. Bose, Power Electronics and AC Derives, Prentice-Hall, 1986.
[11] M.G. Aydeniz, I. Senol, A Luenberger-sliding mode observer with rotor time constant parameter estimation in induction motor drives, Turk. J. Elec. Eng. & Comp. Sci. 19 (2011) 901-1002.
[12] G.J. Rubio, J.M. Cañedo, V.I. Utkin, A.G. Loukianov, Second order sliding mode block control of single-phase induction motors, Robust Nonlinear Control, DOI: 10.1002/rnc.2913 (2012)
[13] Y. Feng, M. Zhou, X. Yu, Sliding-mode observer based flux estimation of induction motors, Lecture Notes in Computer Science, Intelligent Robotics and Applications, 7507 (2012) 530-539.
[14] H. Benderradji, A. Benamor, L. Chrifi-Alaoui, P. Bussy, A. Makouf, Second order sliding mode induction motor control with a new Lyapunov approach, Proceedings of the 9th International Multi-Conference on Systems, Signals and Devices, pp. 1-6, 2012.
[15] R.P. Vieira, C.C. Gastaldini, R.Z. Azzolin, H.A Grundling, Discrete-time sliding mode speed observer for sensorless control of induction motor drives, IET Electr. Power Appl. 6 (2012)  681- 688.
[16] A.Y. Alanis, E.N. Sanchez, A.G. Loukianov, M.A. Perez-Cisneros, Real-time discrete neural block control using sliding modes for electric induction motors, IEEE Trans. Control Syst. Tech. 18 (2010) 11-21.
[18] J.Y. Hung, W. Gao, J.C. Hung, variable structure control: a survey, IEEE Trans. Ind. Electron. 40 (1993) 2-22.
[19] B. Veselic, B.P. Drazenovic, C. Milosavljevic, Improved discrete-time sliding-mode position control using Euler velocity estimation, IEEE Trans. Ind. Electron. 57 (2010) 3840-3847.
[20] M. Comanescu, An induction-motor speed estimator based on integral sliding-mode current control, IEEE Trans. Ind. Electron. 56 (2009) 3414-3423.
[21] C.C. Chan, H.Q. Wang, New scheme of sliding mode control for high performance induction motor drives,” IEE Proc. Electric. Power Appl. 143 (1996) 177-185.
[22] T.G. Park, K.S. Lee, SMC based adaptive input-output linearizing control of induction motors, IEE Proc. Control Theory Appl. 145 (1998) 55-62.
[23] A. Benchaib, A. Rachid, E. Audrezet, Sliding made input-output linearization and field orientation for real time control of induction motors, IEEE Trans. Power Electr. 14 (1999) 128-138.
[24] A. Benchaib, A. Rachid, E. Audrezet, M. Tadjine, Real time sliding mode observer and control of an induction motor, IEEE Trans. Ind. Electr. 46 (1999) 128-138.
[25] B. Sencer, T. Mori, E. Shamoto, Design and application of a sliding mode controller for accurate motion synchronization of dual servo systems, Control Engineering Practice 21 (2013) 1519–1530.
[26] L. Faa-Jeng, C. Po-Huan, C. Chin-Sheng, L. Yu-Sheng, DSP-based cross-coupled synchronous control for dual linear motors via intelligent complementary sliding mode control, IEEE Trans. Indust. Elec. 59 (2012) 1061–1073.
[27] D.Z. Zhao, C.W. Li, J. Ren, Speed synchronization of multiple induction motors with adjacent cross coupling control, Proceedings of the 48th IEEE Conference on Decision and Control, 2009, pp.6805–6810.
[28] F.J. Lin and R.J. Wai, Hybrid control using recurrent fuzzy neural network for linear induction motor servo drive, IEEE Trans. Fuzzy Syst. 9 (2001) 102–115.
[29] F. Barrero, A. Gonzalez, A. Torralba, E. Galvan, L.G. Franquelo, Speed control of induction motors using a novel fuzzy sliding-mode structure, IEEE Trans. Fuzzy Syst. 10 (2002) 375–383.
[30] R.J. Wa, K.M. Lin, Robust decoupled control of direct field oriented induction motor drive. IEEE Trans. Indust. Elec. 52 (2005) 837–854.
[31] H.M. Soliman, E.H.E. Bayoumi, M. Soliman, Robust guaranteed-cost sliding mode control of brushless DC motor: An LMI approach, Int. J. Model. Ident. Control 17 (2012) 251-260.
[32] E.H.E. Bayoumi, Sliding mode position control of synchronous motor with parameters and load uncertainties, Electromotion Sci. J. 17 (2010) 99-106.
[33] H.M. Soliman, E.H.E. Bayoumi, M. Soliman, LMI-based sliding mode control for brushless DC motor drives, Proc. IMechE Part I: J. Syst. Control Eng. 223 (2009) 1035-1043.
[34] R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems, Comput. Aided Des. 43 (2011) 303-315.
[35] K. Ameli, R. Ghazi, A. Azemi, Adaptive fuzzy sliding-mode speed and position controllers for induction motor drives, MSc. Thesis, Ferdowsi University of Mashhad, Mashhad, Iran, 2002.
[36] J.E. Slotine, W. Li, Applied Nonlinear Control, Prentice-Hall Englewood Cliffs, NJ, 1991.
[37] F.I. Lin, S. L. Chiu, Adaptive fuzzy sliding-mode control for PM synchronous servo motor drives, IEE Proc. Electr. Power Appl. 145 (1998) 63-72