ارائه‌ی یک سیستم پیشنهاد‌دهنده‌ی زمانی مبتنی بر تجزیه تنسور‌های اتصالی

نوع مقاله: مقاله پژوهشی فارسی

نویسندگان

1 گروه مهندسی کامپیوتر، واحد نیشابور، دانشگاه آزاد اسلامی، نیشابور، ایران

2 گروه مهندسی کامپیوتر، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

چکیده

سیستم‌های پیشنهاد‌دهنده با تحلیل الگوهای علایق کاربران، آیتم‌ها یا پیشنهاداتی متناسب با علایق کاربر به او ارائه می‌کنند. یک چالش اساسی در این سیستم‌ها این است که علایق کاربران ثابت نبوده و معمولا کاربران تمایل به تغییر علایق خود در طول زمان دارند. تطبیق سیستم‌های پیشنهاددهنده برای مدل کردن تکامل علایق و نیازهای کاربران که مدام درحال تغییر می‌باشند، باعث بهبود پیشنهادات ارائه شده به کاربر می‌گردد. در این مقاله با توسعه یک روش مدل‌سازی علایق پویای کاربر، یک سیستم پیشنهاد‌دهنده زمانی ارائه می‌کنیم. در این روش یک تابع کاهش زمانی برای هر کاربر معرفی می‌شودکه اهمیت علایق قبلی کاربران براساس نرخ تغییر علایق هر کاربر وزن گذاری‌شده و سپس این اطلاعات بهمراه اطلاعات استخراج شده‌ی مربوط به شباهت بین کاربران در طول زمان و داده‌های دموگرافی کاربران به ترتیب در دو تنسور و یک ماتریس مدل شده و با استفاده از تکنیک تجزیه تنسور- ماتریس‌های اتصالی، پویایی علایق کاربران استخراج و پیشنهادات شخصی مناسب با هر کاربر ارائه می‌‌شود. ارزیابی روش پیشنهادی روی دو مجموعه داده‌ی واقعی، بهبود دقت این روش را در پیشنهاد آیتم‌ها به کاربران نسبت به سایر روش‌های مقایسه شده و توانایی بهتر آن در برخورد با مشکل شروع سرد را نشان می‌دهد

کلیدواژه‌ها


   [1]      C. Rana and S. K. Jain, “A study of the dynamic features of recommender systems,” Artificial Intelligence Review, vol. 43, no. 1, pp. 141–153, 2012.

   [2]      J. Cheng, Y. Liu, H. Zhang, X. Wu, and F. Chen, “A new recommendation algorithm based on user’s dynamic information in complex social network,” Mathematical Problems in Engineering, vol. 2015, pp. 1–6, 2015.

   [3]      Y. Y. Lo, W. Liao, C. S. Chang, and Y. C. Lee, “Temporal matrix factorization for tracking concept drift in individual user preferences,” IEEE Transactions on Computational Social Systems, vol. 5, no. 1, pp. 156–168, 2018.

   [4]      C. Rana and S. K. Jain, “An evolutionary clustering algorithm based on temporal features for dynamic recommender systems,” Swarm and Evolutionary Computation, vol. 14, pp. 21–30, 2014.

   [5]      D. Rafailidis, P. Kefalas, and Y. Manolopoulos, “Preference dynamics with multimodal user-item interactions in social media recommendation,” Expert Systems with Applications, vol. 74, pp. 11–18, 2017.

   [6]      I. Barjasteh, “Matrix completion with side Information for effective recommendation,” Ph.D. dissertation, Michigan State University, USA, 2016.

   [7]      W. Pan, “A survey of transfer learning for collaborative recommendation with auxiliary data,” Neurocomputing, vol. 177, pp. 447–453, 2016.

   [8]      H. Yin, B. Cui, L. Chen, Z. Hu, and Z. Huang, “A temporal context-aware model for user behavior modeling in social media systems,” in Proceedings of the 2014 ACM SIGMOD international conference on Management of data, 2014, no. 1, pp. 1543–1554.

   [9]      D. Rafailidis and A. Nanopoulos, “Modeling users preference dynamics and side information in recommender systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 6, pp. 782–792, 2016.

[10]      E. Acar, T. G. Kolda, and D. M. Dunlavy, “All-at-once Optimization for Coupled Matrix and Tensor Factorizations,” arXiv preprint arXiv:1105.3422, no. 1, 2011.

[11]      E. Acar, R. Bro, and A. K. Smilde, “Data Fusion in Metabolomics Using Coupled Matrix and Tensor Factorizations,” Proceedings of the IEEE, vol. 103, no. 9, pp. 1602–1620, 2015.

[12]      H. Su, X. Lin, B. Yan, and H. Zheng, “The collaborative filtering algorithm with time weight based on mapreduce,” in International Conference on Big Data Computing and Communications, 2015, pp. 386–395.

[13]      N. N. Liu, M. Zhao, E. Xiang, and Q. Yang, “Online evolutionary collaborative filtering,” in Proceedings of the fourth ACM conference on Recommender systems, 2010, pp. 95–102.

[14]      S. Spiegel, J. Clausen, S. Albayrak, and J. Kunegis, “Link prediction on evolving data using tensor factorization,” in New frontiers in applied data mining, Springer, Berlin, Heidelberg, 2011, pp. 100–110.

[15]      D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction using matrix and tensor factorizations,” ACM Transactions on Knowledge Discovery from Data, vol. 5, no. 2, pp. 1–27, 2011.

[16]      H. Bao, Q. Li, S. S. Liao, S. Song, and H. Gao, “A new temporal and social PMF-based method to predict users’ interests in micro-blogging,” Decision Support Systems, vol. 55, no. 3, pp. 698–709, 2013.

[17]      C. Zhang, “Improving recommender systems with rich side information,” Ph.D. dissertation, Simon Fraser University, Canada, 2015.

[18]      Y. Koren, “Collaborative filtering with temporal dynamics,” Communications of the ACM, vol. 53, no. 4, pp. 89–97, 2010.

[19]      J. Z. Sun, D. Parthasarathy, and K. R. Varshney, “Collaborative kalman filtering for dynamic matrix factorization,” IEEE Transactions on Signal Processing, vol. 62, no. 14, pp. 3499–3509, 2014.

[20]      C. Zhang, K. Wang, H. Yu, J. Sun, and E.-P. Lim, “Latent factor transition for dynamic collaborative filtering,” in Proceedings of the 2014 SIAM International Conference on Data Mining, 2014, pp. 452–460.

[21]      B. Ju, Y. Qian, M. Ye, R. Ni, and C. Zhu, “Using dynamic multi-task non-negative matrix factorization to detect the evolution of user preferences in collaborative filtering,” PLoS one, vol. 10, no. 8, pp. 1–20, 2015.

[22]      N. N. Liu, L. He, and M. Zhao, “Social temporal collaborative ranking for context aware movie recommendation,” ACM Transactions on Intelligent Systems and Technology, vol. 4, no. 1, pp. 15:1–15:26, 2013.

[23]      A. Y. Aravkin, K. R. Varshney, and L. Yang, “Dynamic matrix factorization with social influence,” in Proceedings of the 2016 IEEE International Workshop on Machine Learning for Signal Processing, 2016, pp. 1–6.

[24]      T. Wu, Y. Feng, J. Sang, B. Qiang, and Y. Wang, “A novel recommendation algorithm incorporating temporal dynamics, reviews and item correlation,” IEICE transactions on Information and Systems, vol. 101, no. 8, pp. 2027–2034, 2018.

[25]      L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell, “Temporal collaborative filtering with bayesian probabilistic tensor factorization,” in Proceedings of the 2010 SIAM International Conference on Data Mining, 2010, pp. 211–222.

[26]      D. Rafailidis and A. Nanopoulos, “Modeling the dynamics of user preferences in coupled tensor factorization,” in Proceedings of the 8th ACM Conference on Recommender systems, 2014, pp. 321–324.

[27]      T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2008.

[28]      E. Acar, M. A. Rasmussen, F. Savorani, T. Næs, and R. Bro, “Understanding data fusion within the framework of coupled matrix and tensor factorizations,” Chemometrics and Intelligent Laboratory Systems, vol. 129, pp. 53–63, 2013.

[29]      I. Barjasteh, R. Forsati, D. Ross, A. H. Esfahanian, and H. Radha, “Cold-start recommendation with provable Guarantees: A decoupled approach,” IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 6, pp. 1462–1474, 2016.

[30]      M. Wang and J. Ma, “A novel recommendation approach based on users’ weighted trust relations and the rating similarities,” Soft Computing, vol. 20, no. 10, pp. 3981–3990, 2016.

[31]      Q. Do and W. Liu, “ASTEN: An accurate and scalable approach to coupled tensor factorization,” in Proceedings of the International Joint Conference on Neural Networks, 2016, pp. 99–106.

[32]      E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Morup, “Scalable tensor factorizations for incomplete data,” Chemometrics and Intelligent Laboratory Systems, vol. 106, no. 1, pp. 41–56, 2011.

[33]      “The Lastfm-1K Dataset.” [Online]. Available: http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html. [Accessed: 01-Jan-2017].

[34]      “The Movielens-1M Dataset.” [Online]. Available: https://grouplens.org/datasets/movielens/. [Accessed: 01-Jan-2017].

[35]      X. Su and Taghi M.Khoshgoftaar, “A survey of collaborative filtering techniques,” Advances in Artificial Intelligence, vol. 2009, pp. 1–19, 2009.

[36]      G. Guo, J. Zhang, and N. Yorke-Smith, “A novel recommendation model regularized with user trust and item ratings,” IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 7, pp. 1607–1620, 2016.