آشکارسازی مرز در تصاویر دیجیتال با استفاده از روش جنگل های ساختاری مبتنی بر گروه بندی و استدلال کانتور

نوع مقاله: مقاله پژوهشی فارسی

نویسندگان

1 گروه مهندسی مخابرات، دانشکده مهندسی برق و کامپیوتر، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 ایران، زاهدان، دانشگاه سیستان و بلوچستان، دانشکده مهندسی برق و کامپیوتر، گروه مهندسی مخابرات.

چکیده

چکیده- آشکارسازی لبه با استفاده از روش جنگل‌های ساختاری با کیفیت نسبتاً بالا و بهنگام انجام میشود. با این وجود، در خروجی این روش، لبه‌هایی با پهنای بیش از یک پیکسل و نیز لبه‌های غیرواقعی که به هیچ مرزی تعلق ندارند قابل مشاهده است. اعمال آستانه بر این خروجی نیز نمی‌تواند تمامی این معایب را رفع کند و گاهی منجر به حذف پیکسل‌های لبه و در نتیجه افت عملکرد این روش می‌شود. در این مقاله با ارائه‌ی روش جنگل‌های ساختاری توسعه یافته مبتنی بر گروه‌بندی و استدلال کانتور، ضمن رفع معایب لبه‌یاب جنگل‌های ساختاری اصلی و بهبود عملکرد آن، به یک آشکارساز مرز دقیق و با کیفیت بالا دست می‌یابیم. با استفاده از این روش و بر اساس معیار اندازه‌ی اف، در مجموع کارائی آشکارسازی لبه 26/2 درصد ارتقا مییابد. الگوریتم پیشنهادی با ارائه‌ی مرزهای دقیق با پهنای یک پیکسل می‌تواند به‌عنوان یک مرحله پیش‌پردازش موثر در بسیاری از عملکردهای پردازشی تصویر مورد استفاده قرار گیرد.

کلیدواژه‌ها


P. Dollar, L. Zitnick, “Fast Edge Detection using Structured Forests,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 37, No. 8, pp.1558-1570, 2015.
J. Canny, “A Computational Approach to Edge Detection”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 6, pp.679-698, 1986.
Z. Qu, P. Wang, Y. Gao, P. Wang, and Z. Shen, “Frequency Domain Filtering of Gradient for Contour Detection,” Int. J. of Light and Electron Optics, Vol. 124, No. 13, pp. 1398-1401, 2013.
K.K. Jena, “Application of COM-SOBEL Operator for Edge Detection of Image,” Int. J. of Innovative Science, Engineering and Technology, Vol. 2, No. 4, pp.48-51, 2015.
B. Gardiner, S.A. Coleman, and B.S. Scotney, “Multiscale Edge Detection using a Finite Element Framework for Hexagonal Pixel-based Images,” J. of Image Processing, Vol.25, No.4, pp.1849-1861, 2016.
P. Melin, C.I. Gonzalez, J.R. Castro, O. Mendoza, and O. Castillo, “Edge Detection Method for Image Processing based on Generalized Type-2 Fuzzy Logic,” IEEE Trans. On Fuzzy System, Vol. 22, No. 6, pp.1515-1525, 2014.
C.S. Tseng, J.H. Wang, “Perceptual Edge Detection via Entropy Driven Gradient Evaluation,” J. of IET Computer Vision, Vol. 10, No. 2, pp.163-171, 2017
JianFang Cao, Lichao Chen, Min Wang, and Yun Tian, “Implementing a Parallel Image Edge Detection Algorithm Based on the Otsu-Canny Operator on the Hadoop Platform,” J. of Computer Intelligence and Neurosci, Volume 2018, No.3, pp.1-12, 2018.
C. Zeng, Y. Li, and C. Li, “Center-Surround Interaction with Adaptive Inhibition: A Computational Model for Contour Detection,” J. of Neuro Image, Vol. 55, No.1, pp.46-66, 2011.
M.W. Spratling, “Image Segmentation using a Sparse Coding Model for Cortical Area V1,” IEEE Trans. on Image Processing, Vol. 22, No. 4, pp.1631-1643, 2013.
K.F. Yang, S.B. Gao, C.F. Guo, C.Y. Li, and Y. J. Li, “Boundary Detection using Double-Opponency and Spatial Sparseness Constraint,” IEEE Trans. On Image Processing, Vol. 24, No.8, pp. 2565-2578, 2015.
 F.J.D. Pernas, M.M. Zarzuela, M.A. Rodriguez, and D.G. Ortega, “Double Recurrent Interaction V1-V2-V4 Based Neural Architecture for Color Natural Sence Boundary Detection and Surface Perception,” J. of Applied Soft Computing, Vol. 21, pp.250-264, 2014.
S. Zheng, A. Juille, and Z. Tu, “Detecting Object Boundary using Low-mid and High-level Information,” J. of Computer Vision and Image Understanding”, Vol. 114, No. 10, pp.1055-1067, 2010.
D.R. Martin, C.C. Fowlkes, and J. Malik,” Learning to Detect Natural Image Boudaries using Brightness, Color, and Texture Cues,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 26, No. 5, pp.530-549, 2004.
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour Detection and Hierarchical Image Segmentation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 33, No. 5, pp.898-916, 2011.
F. He, SH. Wang,” Beyond χ^2 Difference Learning Optimal Metric for Boundary Detection,” IEEE Signal Processing Letters, Vol. 22, No. 1, pp.40-44, 2015.
M. Leordeanu, R. Sukthanker, and C. Sminchisescu, “Generalized Boundaries from Multiple Image Interpretations,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.36, No. 7, pp.1312-1324, 2014.
M. Kass, A. Witkin, and D. Terzopoalos, “Snakes: Active Contour Models,” Int. J. of Computer Vision, Vol. 1, No. 4, pp.321-331, 1998.
M. Ciechoiewski, “An Edge-based Active Contour Model using an Inflation/Deflation Force with a Damping coefficient,” J. of Expert System with Applications, Vol. 44, pp.22-36, 2015.
D. Lui, C. Scharfenberger, K. Fergani, A. Wong, and D.A. Clausi, “Enhanced Decoupled Active Contour using Structural and Textual Variation Energy Functional, IEEE Trans. on Image Processing, Vol.23, No. 2, pp.855-869, 2014.
X. Liu, S. Peng, Y. Cheung, Y. Tang, and J. Du, “Active Contours with a Joint and Region-Scalable Distribution Metric for Interactive Natural Image Segmentation,” J. of IET Image Processing, Vol. 8, No. 12, pp.824-832, 2014.
U. Kirchmaier, S. Hawe, and K. Diepold, “A Swarm Intelligence Inspired Algorithm for Contour Detection in Images,” J. of Applied Soft Computing, Vol. 13, No. 6, pp.3118-3129, 2013.
Z. Dorrani, and M.S. Mahmoodi, “Noisy Images Edge Detection: Ant Colony Optimization Algorithm,” J. of AI and Data Mining, Vol. 4, No. 1, pp.77-83, 2016.
X. Zhang and S. Liu, “Image Edge Feature Extraction and Refining based on Genetic-Ant Colony Algorithm,” J. of TELKOMNIKA, Vol.13, No. 1, pp.118-127, 2015.
Y. Ming, H. Li, and X. He, ‘Winding Number Constrained Contour Detection,” IEEE Trans. on Image Processing, Vol. 24, No. 1, pp.68-79, 2015.
H. Zhang, Y. Liu, B. Xie, and J. Yu, “Oreintation Contrast Model for Boundary Detection,” J. of Visual Communication and Image Representation, Vol. 25, No.5, pp.774-784, 2014.
F. Bergholm, “Edge Focusing,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 6, pp. 624-632, 1987.
S. Deng, Y. Tian, X. Hu, P. Wei, and M. Qin, “Application of New Advanced CNN Structure with Adaptive Threshols to Color Edge Detection,” J. of Communication in Nonlinear Science and Numerical Simulation, Vol. 17, No. 4, pp.1637-1648, 2010.
K.S. Komati, E.O.T. Salles and M.S. Filho, “KSS: using Region and Edge Maps to detect Image Boundaries,” J. of Computing in Science and Engineering, Vol. 13, No. 3, pp.46-52, 2010.
N. Payet, S. Todorovic, “SLEDGE: Sequential Labeling of Image Edges for Boundary Detection,” Int. J. of Computer Vision, Vol. 24, No. 5, pp.774-784, 2014.
N. Widynski, M. Mignotte, “A multiscale particle filter framework for contour detection”, IEEE Trans. On pattern analysis and machine intelligence, Vol. 36, NO. 10, pp. 1922-1935, 2014.
Rami Al-Jarrah, Mohammad Al-Jarrah, and Hubert Roth, “A Novel Edge Detection for Mobile Robot Path Planning,” Journal of Robotics, Volume 2018, No. 9, pp.1-12, 2018.
Saloua Senhaji, and Abdellah Aarab, “A New Edge Detection using Decomposition Model,” International Journal of Intelligent Information Syatem, Vol. 5, No. 3-1, pp.28-31, 2016.
A. Criminisi, J. Shotton, and E. Konukoglu, “Decision Forest: A Unified Framework for Classification, Regression, Density Estimation, Mainfold Learning and Semi-Supervised Learning,” Foundations and Trends in Computer Graghics and Vision Journal, Vol.7, No. 2-3, pp.81-227, 2012.
P. Kontschieder, S. Bulo, H. Bischof, and M. Pelillo, “Structured Classlabels in Random Forests for Semantic Image Labelling,” In 2011 International Conference on Computer Vision (ICCV), Spain, 6-13 Nov. 2011.