جایگذاری انفجارآگاه جهت بهبود فرایند تجمیع ماشین مجازی در محیط ابری

نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 دانشکده مهندسی کامپیوتر و فناوری اطلاعات، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

2 دانشکده علوم پایه، واحد تاکستان، دانشگاه آزاد اسلامی، تاکستان، ایران.

چکیده

در ابر محاسباتی جایگذاری ماشین مجازی فرایند تصمیم گیری انتخاب یک ماشین فیزیکی مناسب برای میزبانی یک ماشین مجازی با توجه به نیارهای ماشین مجازی و منابع موجود ماشین فیزیکی می‌باشد. جایگذاری ماشین مجازی یکی از زیرمسائل اصلی در فرایند تجمیع ماشین مجازی می‌باشد که با چالش‌های متعددی مواجه می‌باشد. جایگذاری انفجار‌آگاه نقشی کلیدی در افزایش کارائی در سیستم‌های محاسبات ابری داشته که نیاز به توجه و بررسی خاص داردبه همین دلیل ما در این مقاله با ارائه روشی موثر برای جایگذاری ماشین‌های مجازی، مدل فرایند تجمیع ماشین مجازی را توسعه داده‌ایم. روش پیشنهادی شامل دو الگوریتم انفجارآگاه برای جایگذاری آغازین و مجدد ماشین‌های مجازی می‌باشد. هدف الگوریتم‌های پیشنهادی کاهش اثرات منفی انفجارهای بارکاری، در فرایند تصمیم‌گیری برای جایگذاری ماشین‌های مجازی می‌باشد. ما از بارهای کاری واقعی و تصادفی و شبیه‌ساز کلودسیم برای ارزیابی کارایی الگوریتم‌های پیشنهادی استفاده کرده‌ایم. نتایج آزمایشات برتری الگوریتم‌های پیشنهادی را از نظر کارائی در مقایسه با الگوریتم‌های پیشین تائید می‌کنند.

کلیدواژه‌ها


[1]               A. Beloglazov, Energy-efficient management of virtual machines in data centers for cloud computing: University of Melbourne, Department of Computing and Information Systems, 2013.
[2]               M. H. Ferdaus, "Multi-objective Virtual Machine Management in Cloud Data Centers," 2016.
[3]               Z. Li, C. Yan, X. Yu, and N. Yu, "Bayesian network-based virtual machines consolidation method," Future Generation Computer Systems, vol. 69, pp. 75-87, 2017.
[4]               R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, and F. Xia, "A survey on virtual machine migration and server consolidation frameworks for cloud data centers," Journal of Network and Computer Applications, vol. 52, pp. 11-25, 2015.
[5]               G. Lovász, F. Niedermeier, and H. De Meer, "Performance tradeoffs of energy-aware virtual machine consolidation," Cluster Computing, vol. 16, pp. 481-496, 2013.
[6]               A. Beloglazov and R. Buyya, "Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers," Concurrency and Computation: Practice and Experience, vol. 24, pp. 1397-1420, 2012.
[7]               M. A. Khan, A. Paplinski, A. M. Khan, M. Murshed, and R. Buyya, "Dynamic Virtual Machine Consolidation Algorithms for Energy-Efficient Cloud Resource Management: A Review," in Sustainable Cloud and Energy Services, ed: Springer, 2018, pp. 135-165.
[8]               F. Lopez-Pires and B. Baran, "Virtual machine placement literature review," arXiv preprint arXiv:1506.01509, 2015.
[9]               M. Masdari, S. S. Nabavi, and V. Ahmadi, "An overview of virtual machine placement schemes in cloud computing," Journal of Network and Computer Applications, vol. 66, pp. 106-127, 2016.
[10]             S. Mustafa, B. Nazir, A. Hayat, and S. A. Madani, "Resource management in cloud computing: Taxonomy, prospects, and challenges," Computers & Electrical Engineering, vol. 47, pp. 186-203, 2015.
[11]             I. Pietri and R. Sakellariou, "Mapping virtual machines onto physical machines in cloud computing: A survey," ACM Computing Surveys (CSUR), vol. 49, p. 49, 2016.
[12]             Z. Luo and Z. Qian, "Burstiness-aware server consolidation via queuing theory approach in a computing cloud," in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, 2013, pp. 332-341.
[13]             H.-P. Jiang and W.-M. Chen, "Self-adaptive resource allocation for energy-aware virtual machine placement in dynamic computing cloud," Journal of Network and Computer Applications, vol. 120, pp. 119-129, 2018.
[14]             M. C. Silva Filho, C. C. Monteiro, P. R. Inácio, and M. M. Freire, "Approaches for optimizing virtual machine placement and migration in cloud environments: A survey," Journal of Parallel and Distributed Computing, vol. 111, pp. 222-250, 2018.
[15]             Q. Zheng, R. Li, X. Li, N. Shah, J. Zhang, F. Tian, et al., "Virtual machine consolidated placement based on multi-objective biogeography-based optimization," Future Generation Computer Systems, vol. 54, pp. 95-122, 2016.
[16]             E. Arianyan, H. Taheri, and S. Sharifian, "Novel energy and SLA efficient resource management heuristics for consolidation of virtual machines in cloud data centers," Computers & Electrical Engineering, vol. 47, pp. 222-240, 2015.
[17]             S. B. Shaw and A. K. Singh, "Use of proactive and reactive hotspot detection technique to reduce the number of virtual machine migration and energy consumption in cloud data center," Computers & Electrical Engineering, vol. 47, pp. 241-254, 2015.
[18]             S. Y. Z. Fard, M. R. Ahmadi, and S. Adabi, "A dynamic VM consolidation technique for QoS and energy consumption in cloud environment," The Journal of Supercomputing, pp. 1-22, 2017.
[19]             H. Li, W. Li, H. Wang, and J. Wang, "An optimization of virtual machine selection and placement by using memory content similarity for server consolidation in cloud," Future Generation Computer Systems, vol. 84, pp. 98-107, 2018.
[20]             A. Mosa and N. W. Paton, "Optimizing virtual machine placement for energy and SLA in clouds using utility functions," Journal of Cloud Computing, vol. 5, p. 17, 2016.
[21]             S. K. Panda and P. K. Jana, "An Efficient Request-Based Virtual Machine Placement Algorithm for Cloud Computing," in Distributed Computing and Internet Technology, ed: Springer, 2017, pp. 129-143.
[22]             P. H. Castro, V. L. Barreto, S. L. Corrêa, L. Z. Granville, and K. V. Cardoso, "A joint CPU-RAM energy efficient and SLA-compliant approach for cloud data centers," Computer Networks, vol. 94, pp. 1-13, 2016.
[23]             H. M. Naeen, E. Zeinali, and A. T. Haghighat, "A stochastic process-based server consolidation approach for dynamic workloads in cloud data centers," The Journal of Supercomputing, pp. 1-28, 2018.
[24]             M. H. Sayadnavrad, A. T. Haghighat, and A. M. Rahmani, "A reliable energy-aware approach for dynamic virtual machine consolidation in cloud data centers," The Journal of Supercomputing, pp. 1-22, 2018.
[25]             A. Horri, M. S. Mozafari, and G. Dastghaibyfard, "Novel resource allocation algorithms to performance and energy efficiency in cloud computing," The Journal of Supercomputing, vol. 69, pp. 1445-1461, 2014.
[26]             K. Park and V. S. Pai, "CoMon: a mostly-scalable monitoring system for PlanetLab," ACM SIGOPS Operating Systems Review, vol. 40, pp. 65-74, 2006.
[27]             M. Dayarathna, Y. Wen, and R. Fan, "Data center energy consumption modeling: A survey," IEEE Communications Surveys & Tutorials, vol. 18, pp. 732-794, 2016.
[28]             Y. C. Lee and A. Y. Zomaya, "Energy efficient utilization of resources in cloud computing systems," The Journal of Supercomputing, vol. 60, pp. 268-280, 2012.
[29]             E. Arianyan, H. Taheri, and S. Sharifian, "Novel heuristics for consolidation of virtual machines in cloud data centers using multi-criteria resource management solutions," The Journal of Supercomputing, vol. 72, pp. 688-717, 2016.
[30]             Y. Sharma, B. Javadi, W. Si, and D. Sun, "Reliability and energy efficiency in cloud computing systems: Survey and taxonomy," Journal of Network and Computer Applications, vol. 74, pp. 66-85, 2016.