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Abstract- Optimization is the process of making something as good or effective as possible. Optimization 

problems are used over many fields such as economics, science, industry and engineering. The growing use of 

optimization makes it essential for researchers in every branch of science and technology. To solve optimization 

problems many algorithms have been introduced, while achieving a higher quality of results in terms of accuracy 

and robustness is still an issue. Metaheuristics are widely recognized as efficient approaches for many hard 

optimization problems. In this study, to achieve a higher quality of results in numerical functions optimization, 

two new operators named N-digit lock search (NLS) and Two-Math crossover are introduced to enhance the 

genetic algorithm (GA) as a widely used metaheuristic. The NLS operator is inspired by the N-digit combination 

lock pattern and enhances the exploitative behavior of the GA by calibrating the current best solution and the 

relatively new Two-Math crossover operator combines both two-point and arithmetic crossover techniques to 

guide the overall search process better. The proposed enhanced genetic algorithm (EGA) is tested over 33 

benchmark mathematical functions and the results are compared to some population-based, particle swarm 

optimization (PSO2011) and artificial bee colony (ABC) algorithms, and single-solution based, simulated 

annealing (SA), pattern search (PS), and vortex search (VS). A problem-based test is performed to compare the 

performance of the algorithms, which results shows the proposed EGA outperforms all other algorithms, SA, PS, 

VS, PSO2011 and ABC. In addition, it surprisingly finds the global best points for almost all 33 test functions 

with a constant value for 2 out of 3 EGA operators. 
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I. INTRODUCTION 

Hard optimization problems are problems that cannot be 

solved to optimality, or any  guaranteed bound, by any exact, 

deterministic method within a ‘‘reasonable’’ time limit. 

These problems can be divided into several categories. To 

find acceptable solutions for these types of problems, we can 

use metaheuristics. A metaheuristic is an algorithm designed 

to solve approximately a wide range of hard optimization 

problems without having to adapt to each problem deeply 

[1]. 

Metaheuristics are mainly classified and studied under two 

major categories, single-solution based and population-

based [1, 2]. Single-solution based metaheuristics, are based 

on a single solution and include local search-based 

metaheuristics such as simulated annealing (SA)[3, 4], 

pattern search (PS) [5], and random search (RS) [6]. In 

population-based metaheuristics, first, a number of solutions 

are created and then updated continuously until the 

termination condition is met. Population-based 

metaheuristics are generally studied under two major 

groups: evolutionary algorithms and swarm-based 

algorithms. Fig. 1 depicts a visual categorization of these 

metaheuristics. 

Although many metaheuristic algorithms have been 

introduced so far, works to provide a metaheuristic 

algorithm to get higher accuracy of results for the problems 

in hand continues in the research field [7-9], and achieving 

higher accuracy of results is still an issue. 

Among other metaheuristics, a genetic algorithm (GA) [10]  
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is arguably the most well-known and mostly used 

metaheuristic. The power of GAs comes from the fact that 

the technique is robust and can deal successfully with a wide 

range of problem areas including those which are difficult 

for other methods to solve. However, in some hard to 

optimize problems, GA usually finds near-global optimum 

but after some generations cannot offer further improvement 

even if a large number of generations are produced. Finally, 

at the end of the execution of GA, there is no guaranty to 

find the global best or at least the best possible solution using 

the currently found ones. 

In this study we propose an enhanced genetic algorithm 

(EGA) which utilizes two new operators, namely, N-digit 

lock search (NLS), and a relatively new hybrid crossover 

operator named Two-Math crossover to solve bound-

constrained global optimization problems. Here, the 

proposed NLS and Two-Math operators are applied to the 

standard continuous genetic algorithm as operators and 

results show that the proposed EGA considerably improves 

the performance of the search process and finds almost all 

the global best points for test functions. The proposed EGA 

is tested over the 33 well-known benchmark functions, and 

the results were compared to SA, PS, PSO2011[11], 

ABC[12], and VS[13] algorithms, where EGA was found to 

outperform all these algorithms. 

The remaining part of the paper is organized as 

follows. Section 2 demonstrates the proposed EGA 

algorithm. Section 3 covers the experimental results 

and discussion. Finally, section 4 concludes the work. 

II. THE PROPOSED EGA 

   The proposed EGA is comprised of GA and two new 

operators introduced in the present work, namely the NLS 

and the Two-Math crossover. After initializing the 

population, using the roulette wheel selection method, the 

fittest parents will be selected to undergo the mating process. 

The mating process takes place by applying Two-Math 

crossover to form two high-quality offspring. The Two-

Math crossover consists of two phases: first, by spreading 

good gens using two-point crossover, and second, by 

applying the arithmetic crossover with the probability of               

ρ arithmetic to the same offspring to adjust them to diverse the 

population and find new promising solutions in the 

continuous search space. Afterward, some offspring will 

undergo the mutation process with the probability of pm. 

Then, the NLS operator works on the best solution found so 

far “Sbest” and tries to tune it to reach the best fitness 

available for Sbest. Finally, the tuned Sbest is inserted E 

time into the new population to fulfill elitism. E is a 

parameter into adjusting elitism which could be set from 1 

to N where N is the population size. We had determined the 

value of E by parameter tuning to find the best degree of 

elitism that works best by EGA. Our elitism strategy takes 

place by inserting Sbest E times into the population, instead 

of selecting and inserting E best individuals. Using high 

values for E leads the population to stuck in a local optimum 

and/or behave randomly. Assuming E=1 is a typical elitism 

strategy that is commonly used by elitism-based GAs. We 

found E=3 a compromise point where both faster 

convergence and local optima avoidance are obtained. In the 

middle stages of EGA, thanks to the roulette wheel selection 

method, the population will be full of the fittest solutions 

found so far, which are likely very similar to the Sbest and 

so, faster convergence to either local or global optimum 

point is achieved. Here if Sbest is global optima, it is done, 

and if the Sbest is local optima, then because of population-

based approach and variation operators (mostly the 

mutation), new variants of Sbest will be generated. Resulted 

in Sbest variations (after applying the NLS operator) are 

either better or worse than Sbest itself. Here, by inserting 

better Sbest variations into the population and repeating the 

evolution process, the total solutions will be guided towards 

the global optimum point. Fig. 2. describes the proposed 

EGA.  

A. Methodology 

1) Initial population and chromosome representation 

Given an initial population of N chromosomes, the initial 

values for each gen is generated by uniformly distributed 

random real values as below: 

𝑥𝑖(𝑘) ← 𝑈[𝑥𝑚𝑖𝑛(𝑘) … 𝑥𝑚𝑎𝑥(𝑘)] .                            (1) 

 

𝑓𝑜𝑟 𝑖 𝜖 [1 …  𝑁]𝑎𝑛𝑑 𝑘 𝜖 [1 …  𝑛] . 

Where 𝑥 is a vector of individuals of size N; U is the uniform 

random real number generator, and 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥  are 

lower and upper bounds for generated numbers. In the 

present study, the real coded representation method is 

adopted, in which each continuous variable holds a real 

number [14].  

2) Elitist strategy and selection method 

In the proposed EGA, a new elitism strategy named 

elitism of degree E is used, where E is the number of times 
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Fig. 1. Visual categorization of metaheuristics mentioned in this paper. 
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the elite individual “Sbest” is inserted into the new 

population in each iteration. Inserting the E elite individuals 

into the new population takes place by replacing them with 

E random individuals which already exist in the population. 

For the selection process we adopted the roulette wheel 

method [15, 16] since the roulette wheel can ensure a faster 

convergence to either local or global optimum point. 
 

3) Two-Math crossover method 

In the present work, a relatively new hybrid crossover 

named Two-Math is introduced by combining the two-point 

and arithmetic crossover methods. These methods are 

utilized as a single crossover operator. In this Two-Math 

crossover as it can be understood from the name, we first 

apply two-point crossover to spread good gens through 

chromosomes and produce two offspring by the mating 

process. Then arithmetic crossover which is essentially 

designed to use in continuous GA, is applied to the same two 

produced offspring with the probability of 𝜌𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 , 

where we found  𝜌𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 = 0.01 by parameter tuning. 

Fig. 3. describes the Two-Math crossover method. 

 

4) Mutation method 

In the present work we used a uniform mutation [17]. 

The formulation can be written as:  

 𝑟 ← 𝑈[0. . 1] 
 

𝑥𝑖(𝑘)   ←    {
𝑥𝑖(𝑘).   𝑖𝑓 𝑟 ≥ 𝜌

𝑈[𝑥𝑚𝑖𝑛(𝑘).  𝑥𝑚𝑎𝑥(𝑘)].  𝑖𝑓 𝑟 < 𝜌
 

 

𝑓𝑜𝑟 𝑖 𝜖 [1. . 𝑁]𝑎𝑛𝑑 𝑘 𝜖 [1. . 𝑛]. 
 

 

 

 

5)  Stopping criteria of EGA 

The EGA is terminated after a 500000 prespecified 

maximum number of generations. This number of iterations 

is also applied in other algorithms which are used for 

performance comparison. 

 

6) The NLS operator 

The NLS operator is inspired by the N-digit combinational 

lock pattern and is used to improve the exploitative behavior 

of GA. Fig. 4. demonstrates a typical 10-digit combinational 

lock. In decimal representation, every digit of any number 

consists of digits ranging from 0 to 9. Considering the 

optimization of the continuous function, the same rule 

applies to the real numbers which are used as the value of 

the optimization functions variables. Like a combinational 

lock, in NLS the goal is to find the best digits for an N-digit 

solution of a numerical optimization function. In NLS, 

instead of the brute force search that happens while guessing 

the combinational lock password, a priority numerical 

search is used. It begins from calibrating the most significant 

digit of Sbest to less significant one using a vector of fixed 

values of length N that we call it the calibration vector (CV). 

The search process keeps calibrating Sbest in a way that 

fitness value for Sbest continually improves, until no 

improvement is available to Sbest. Fig. 5. Depicts a sample 

CV of length 10. The CV initialization could be varied 

according to the type of target problems and the amount of 

precision required. The NLS operator starts with Sbest, then 

attempts to find a better solution by making either an 

incremental or decremental change to the Sbest. Changes are 

made by means of adding or subtracting the whole CV 

values with Sbest starting from CV[0] to CV[N] in which 

better fitness is gained. If the change produced a better 

solution, another incremental or decremental change is made 

to the Sbest, and so on, until no further improvements can be 

achieved. As a result, rapid convergence to the best possible 

improvement available for Sbest is achieved. Fig. 6. shows 

the NLS pseudo code. 

No. 1 2 3 4 5 6 7 8 9 10 

Value 4.0 2.0 1.0 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001 
Fig. 5. Sample calibration vector of length 10 

(2) 

Fig. 4. A typical 10-digit combinational lock pad 

Parents  {randomly generated population} 

While (maximum number of iterations is not reached) 

   Calculate the fitness of each parent in the population 
   Elite  Best parent 

   Children  0 

   While | Children | < | Parents | 
      Use fitnesses to probabilistically select a pair of parents for mating using roulette wheel selection method 

      Mate the parents to create children c1 and c2 using Two-Math crossover 

      Children   Children U {c1, c2} 
   Loop 

   Randomly mutate some of the children 

   Apply NLS to the Elite individual 

   Parents  Children U Elite E Times   //insert elite individual (Sbest) E times into the population 

   Parents  Best N Parents 

Next generation 

Fig. 2. The proposed EGA pseudo code 

Fig. 3. Two-Math crossover pseudo code 
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Figs 7, 8, and 9 display fitness values for the 2-dimensional 

booth, and 30-dimensional SumSquares and DixonPrice test 

functions after 100 iterations respectively. Precision values 

represent the CV length (ranging from 0 to 30) utilized by 

the NLS operator. Since the precision value of “0”, means 

running the simple GA without using the NLS operator, 

dramatic improvement can be seen using the CV length of 

only “1” over the max of 100 iterations. Furthermore, using 

the same number of iterations, results from applying CV of 

length 30 is outstanding, so that Booth, SumSquares and 

DixonPrice fitness values range from (0.015434858 to 

3.15544E-30), (29516.6809 to 0.0) and (122522.3830 to 

8.77608E-30) respectively. 

Inputs: Initialized Calibration Vector “CV” (i.e. Fig. 5.) 

                Best solution found so far “Sbest” 

                          Chromosome Size “CS” 
i = 0; 

S = Sbest 

Repeat 

Set direction (either to “+” or “-“) in which improvement is available to the S 

   Repeat 

      Starting from CV[0] to CV[N], apply whole CV to S(i) either by adding or subtracting depending on the current direction 
   While (improvement is available for S(i)) //so fitness value for whole S will be improved 

   i++; 

While i < CS 
Sbest = S 

Output: Sbest as the best solution achieved 

Fig. 6. The NLS operator pseudo code 
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 Table 1 

Statistical results of 30 runs obtained by SA, PS, PSO2011, ABC, VS and EGA algorithms (values < 10-16 are considered as 0). Where best values 

found by algorithms are global optima, they marked with “*”.    C: Characteristics, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable 
Test bed C Min.  SA PS PSO2011 ABC VS EGA 

Stepint US 0 Mean 

StdDev 

Best 

1.866666667 

1.136641554 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

Step US 0 Mean 

StdDev 

Best 

0 

0 

0* 

0 

0 

0* 

0.066666667 

0.253708132 

0* 

0 

0 

0* 

0.2 

0.406838102 

0* 

0 

0 

0* 

Sphere US 0 Mean 

StdDev 

Best 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

2.75098E-16 

0 

2.23487E-16 

0 

0 

0* 

0 

0 

0* 

SumSquares US 0 Mean 

StdDev 

Best 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

2.75098E-16 

0 

1.85594E-16 

0 

0 

0* 

0 

0 

0* 

Quartic US 0 Mean 

StdDev 

Best 

0.4028326 

0.301544881 

0.001414536 

0.049370406 

0.046578461 

1.61333E-05 

1.64098E-05 

5.56581E-06 

7.13993E-06 

0.013732963 

0.002379448 

0.008413424 

0.000145026 

7.30549E-05 

5.54996E-05 

7.38312E-05 

1.069E-04 

5.81378E-06 

Beale UN 0 Mean 

StdDev 

Best 

0.000430475 

0.000943865 

2.51078E-08 

0 

0 

0* 

0 

0 

0* 

6.37598E-16 

3.58687E-16 

0* 

0 

0 

0* 

0 

0 

0* 

Easom UN -1 Mean 

StdDev 

Best 

-0.028827505 

0.157894721 

-0.864825008 

-8.11022E-05 

0 

-8.11022E-05 

-1 

0 

-1* 

-1 

0 

-1* 

-1 

0 

-1* 

-1 

0 

-1* 

Matyas UN 0 Mean 

StdDev 

Best 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

Colville UN 0 Mean 

StdDev 

Best 

1.83377047 

2.351638954 

0.000971812 

0.002199995 

0 

0.002199995 

0 

0 

0* 

0.00576453 

0.003966867 

0.000383073 

0 

0 

0* 

0 

0 

0* 

Trid6 UN -50 Mean 

StdDev 

Best 

-49.84789091 

0.150775917 

-49.98701123 

-50 

0 

-50* 

-50 

3.61345E-14 

-50* 

-50 

4.94748E-14 

-50* 

-50 

2.96215E-14 

-50* 

-50 

1.67649E-12 

-50* 

Trid10 UN -210 Mean 

StdDev 

Best 

209.5023223 

0.230476381 

-209.8801988 

-209.9954224 

0 

-209.9954224 

-210 

2.30778E-13 

-210* 

-210 

9.62204E-12 

-210* 

-210 

6.19774E-13 

-210* 

-210 

5.70687E-11 

-210* 

Zakharov UN 0 Mean 

StdDev 

Best 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

7.56674E-14 

3.76382E-14 

2.31887E-14 

0 

0 

0* 

0 

0 

0* 

Powell UN 0 Mean 

StdDev 

Best 

0 

0 

0* 

0 

0 

0* 

2.04664E-07 

1.21051E-08 

1.72679E-07 

9.09913E-05 

1.42475E-05 

.23427E-05 

1.43967E-05 

2.27742E-06 

5.71959E-06 

0 

0 

0* 

Schwefel 2.22 UN 0 Mean 

StdDev 

Best 

0 

0 

0* 

0 

0 

0* 

1.094284383 

0.870781136 

0.107097937 

8.51365E-16 

0 

8.51365E-16 

0 

0 

0* 

0 

0 

0* 

Schwefel 1.2 UN 0 Mean 

StdDev 

Best 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0.000760232 

0.000440926 

0.00027179 

0 

0 

0* 

0 

0 

0* 

Rosenbrock UN 0 Mean 

StdDev 

Best 

0.224618742 

0.097171414 

0.082077849 

9.84185348 

0 

9.84185348 

0.930212233 

1.714978077 

0* 

0.003535257 

0.003314818 

7.08757E-05 

0.367860114 

1.130879848 

9.42587E-05 

0.930212233 

1.686152863 

0* 

Dixon-Price UN 0 Mean 

StdDev 

Best 

0.990721802 

0.029412712 

0.871516993 

0.666666667 

0 

0.666666667 

0.666666667 

4.38309E-16 

0.666666667 

1.91607E-15 

2.55403E-16 

1.1447E-15 

0.666666667 

7.68909E-16 

0.666666667 

0 

0 

0* 

Foxholes MS 0.998003838 Mean 

StdDev 

Best 

5.5682975 

4.367922182 

0.998003838* 

0.998003838 

4.51681E-16 

0.998003838* 

34.26621987 

126.6004794 

0.998003838* 

0.998003933 

4.33771E-07 

0.998003838* 

0.998003838 

0 

0.998003838* 

0.998003838 

0 

0.998003838* 

Branin MS 0.397887358 Mean 

StdDev 

Best 

0.398269177 

0.001624387 

0.397887361 

0.397887358 

0 

0.397887358* 

0.397887358 

0 

0.397887358* 

0.397887358 

0 

0.397887358* 

0.397887358 

0 

0.397887358* 

0.397887358 

5.99931E-16 

0.397887358* 

Bohachevsky1 MS 0 Mean 

StdDev 

Best 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

Booth MS 0 Mean 

StdDev 

Best 

5.28496E-05 

7.35674E-05 

7.35674E-05 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

Rastrigin MS 0 Mean 

StdDev 

Best 

0 

0 

0* 

0 

0 

0* 

26.11016129 

5.686650032 

16.91429893 

0 

0 

0* 

57.60799224 

13.94980276 

13.94980276 

0 

0 

0* 

Schwefel MS -12569.48662 Mean 

StdDev 

Best 

-1891.275468 

137.3913021 

-2188.304761 

-3686.285205 

2.77513E-12 

-3686.285205 

-8316.185447 

463.9606712 

-9466.201047 

-12569.48662 

1.85009E-12 

-12569.48662* 

-11283.05416 

352.1869262 

-11799.62928 

-12569.48662 

1.81899E-12 

-12569.48662* 

Michalewicz2 MS -1.80130341 Mean 

StdDev 

Best 

1.792778285 

0.043874926 

-1.801296643 

-1.80130341 

1.35504E-15 

-1.80130341* 

-1.80130341 

9.03362E-16 

-1.80130341* 

-1.80130341 

9.03362E-16 

-1.80130341* 

-1.80130341 

9.03362E-16 

-1.80130341* 

-1.80130341 

6.66134E-16 

-1.80130341* 

Michalewicz5 MS -4.687658179 Mean 

StdDev 

Best 

-3.670604734 

0.496257736 

-4.684023442 

-4.495893207 

2.71009E-15 

-4.495893207 

-4.67700874 

0.036487971 

-4.687658179* 

-4.687658179 

2.60778E-15 

-4.687658179* 

-4.670953055 

0.020809276 

-4.687658179* 

-4.681228926 

0.034622588 

-4.687658179* 

Michalewicz10 MS -9.660151716 Mean 

StdDev 

Best 

-6.060491565 

0.504024688 

-6.880235805 

-8.461507306 

5.42017E-15 

-8.461507306 

-9.204154798 

0.298287637 

-9.660151716* 

-9.660151716 

0 

-9.660151716* 

-8.793361668 

0.382153549 

-9.410563187 

-9.660151716 

4.91851E-15 

-9.660151716* 

Schaffer MN 0 Mean 

StdDev 

Best 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

Six Hump 

Camel Back 

MN -1.031628453 Mean 

StdDev 

Best 

-1.031621639 

2.1595E-05 

-1.031628448 

-1.031628453 

4.51681E-16 

-1.031628453* 

-1.031628453 

6.71219E-16 

-1.031628453* 

-1.031628453 

6.77522E-16 

-1.031628453* 

-1.031628453 

6.77522E-16 

-1.031628453* 

-1.031628453 

0 

-1.031628453* 

Bohachevsky2 MN 0 Mean 

StdDev 

Best 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

Bohachevsky3 MN 0 Mean 

StdDev 

Best 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

0 

0 

0* 

Shubert MN -186.7309088 Mean 

StdDev 

Best 

-186.7309087 

5.76173E-07 

-186.7309088* 

-123.5767709 

0 

-123.5767709 

-186.7309088 

4.49449E-13 

-186.7309088* 

-186.7309088 

1.18015E-14 

-186.7309088* 

-186.7309088 

1.18015E-14 

-186.7309088* 

-186.7309088 

2.84217E-14 

-186.7309088* 

GoldStein-

Price 

MN 3 Mean 

StdDev 

Best 

3.000000254 

4.36073E-07 

3* 

30 

1.08403E-14 

30 

3 

1.22871E-15 

3* 

3 

1.7916E-15 

3* 

3 

1.44961E-15 

3* 

3 

2.61436E-14 

3* 

Kowalik MN 0.000307486 Mean 

StdDev 

Best 

0.002635099 

0.001644496 

0.000780214 

0.00031966 

0 

0.00031966 

0.000307486 

0 

0.000307486* 

0.000319345 

5.4385E-06 

0.00030894 

0.000307486 

0 

0.000307486* 

0.000307486 

0 

0.000307486* 
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III. EXPERIMENTAL RESULTS 

The proposed EGA algorithm is tested over 33 benchmark 

functions, that are obtained from the study performed by 

Doğan and Ölmez [13]. They compared the performance of 

the VS algorithm to the SA, PS, PSO2011 and ABC 

algorithms. We have compared the performance of the 

proposed approach to the mentioned algorithms using the 

same benchmark. SA and PS are two well-known single-

solution based algorithms, and PSO2011 is an extension of 

the standard PSO algorithm. 

For evaluation, the overall performances of the algorithms 

are studied for a constant number of iterations. After a 

certain number of iterations, the algorithms are evaluated 

according to the mean and the best fitness values found for 

each benchmark function. 

A. Algorithm settings 

Population-based metaheuristics (ABC, PSO2011, EGA) 

are selected to have a population size of 50. For the proposed 

EGA algorithm, crossover and CV parameters are set to the 

fixed value of 0.9 and 14 respectively, and mutation rates are 

set as (Kowalik: 1.0), (Quartic-Easom-Schwefel-

Michalewicz5-Michalewicz10-Bohachevsky2-

Bohachevsky3-Shubert: 0.8), (Rastrigin- Schaffer: 0.1), (the 

rest of functions: 0.5). The number of neighborhood 

solutions of the VS algorithm is set to 50. The SA algorithm 

always performs with a single solution, and the PS algorithm 

creates its own neighbor vectors (pattern). The acceleration 

coefficients (c1 and c2) of the PSO2011 algorithm are both 

set to 1.8, and the inertia coefficient is set to 0.6, as in [18]. 

The limit value for the ABC algorithm is determined as limit 

= SN ⁄ D, where SN represents the number of food sources 

and D represents the dimension. The maximum number of 

iterations is selected as 500,000 to evaluate the overall 

performances of the algorithms. 
 

B. Overall performances of the algorithms 

The proposed EGA algorithm is compared to the SA, PS, 

PSO2011, ABC and VS algorithms, using the 33 benchmark 

functions given in Table 1. For each algorithm, 30 different 

runs are performed, and the mean and the best fitness values 

are recorded. The maximum number of iterations is selected 

to be 500,000, as mentioned previously. For the SA and PS 

algorithms, the MATLAB® Global Optimization Toolbox 

is used, and the other algorithms are also coded in 

MATLAB®, except EGA which is coded in C#.Net. For 

each algorithm, all of the functions are run in parallel using 

an Intel® Corei5 CPU 8 GB RAM workstation. 

Experimental results are presented in Table 1. 

Most of the modern software development tools use an 

arithmetic precision of 10-16 in the double-precision mode. 

An arithmetic precision value that is higher than necessary, 

makes it difficult to compare the local search abilities of the 

algorithms [19]. For this purpose, during the pair-wise 

comparison, resulting values below 10-16 are considered as 

0. From Table 1, it can be shown that the EGA algorithm 

outperforms the SA, PS, PSO2011, ABC and VS algorithms. 

The SA algorithm performs a pure random search over the 

search space for which obtained results become meaningful. 

The PS algorithm is also a single-solution based algorithm 

that performs poorly compared to the EGA algorithm. The 

ABC algorithm is a powerful swarm-based algorithm that is 

used successfully for the solution of many types of 

optimization problems. For a number of   functions, the ABC 

algorithm fails to exceed the 10-16 limit. Once the algorithm 

converges to a near-optimal point, the excellent local search 

ability of the EGA algorithm can be seen, which helps the 

algorithm to further improve the solution. 

In Table 2, a problem-based (US, UN, MS and MN) 

comparison of the algorithms is also provided. Each cell in 

the Table 2 shows the total count of the three cases (+ ➔ 

Win / = ➔ Equal / - ➔ Loss). From Table 2, it can be shown 

that, for MN (multimodal non-separable) functions, the 

proposed EGA algorithm performs better than the other 

algorithms. For UN (unimodal non-separable) functions the 

proposed EGA algorithm again performs better than the 

others. Thus, from these results it can be inferred that the 

EGA algorithm performs better than other algorithms. For 

MS (multimodal separable) functions the proposed EGA 

algorithm again outperforms the other algorithms except for 

the ABC algorithm. Finally, for US (unimodal separable) 

functions the proposed EGA algorithm performs completely 

better than other algorithms while being competitive with 

the PSO2011 algorithm. 
 

C. Analyzing the effect of proposed operators 

Table 3 

Comparing the effect of each proposed operator independently. For an 

accurate comparison, exact values are displayed. 
GA1: GA with two-point crossover. 

GA2: GA with proposed Two-Math crossover. 

GA3: GA with two-point crossover and proposed NLS operator. 
EGA: Proposed algorithm. 

Test bed Min.  GA1 GA2 GA3 EGA 

Beale 0 Mean 

StdDev 
Best 

1.25927E-

07 
8.28221E-

08 

1.52144E-
08 

1.00663E-

07 
5.27296E-

08 

3.08371E-
08 

5.15487E-

25 
1.53119E-

25 

2.68522E-
25 

4.79682E-

25 
1.37906E-

25 

2.21837E-
25* 

Booth 0 Mean 

StdDev 

Best 

4.33821E-

09 

5.51052E-
09 

1.96679E-

11 

2.86155E-

09 

3.61045E-
09 

5.35202E-

11 

2.97156E-

26 

2.32237E-
26 

5.50625E-

27 

7.42323E-

27 

1.91435E-
26 

7.88861E-

31* 

Colville 0 Mean 

StdDev 

Best 

1.89115E-

01 

0.15565469
6 

1.56804E-

03 

2.13100E-

01 

0.16798380
9 

2.30417E-

04 

4.17146E-

22 

1.82244E-
22 

1.24546E-

22 

3.74920E-

22 

1.81417E-
22 

8.79868E-

23* 

Kowalik 0.000

30748

6 

Mean 

StdDev 

Best 

0.00059326

8 

0.00010383
9 

0.00040671

3 

0.00048550

4 

9.93076E-
05 

0.00032080

9 

0.0003074

86 

6.64809E-
17 

0.0003074

86 

0.0003074

86 

4.91747E-
17 

0.0003074

86* 

Table 2 

Problem-based comparison of the proposed EGA algorithm. 

Problem 

type 

EGA vs. 

SA 

EGA vs. 

PS 

EGA vs. 

PSO2011 

EGA vs. 

ABC 

EGA vs. 

VS 

US 2/3/0 1/4/0 1/3/1 3/2/0 2/3/0 

UN 7/5/0 5/7/0 8/4/0 8/4/0 3/9/0 

MS 7/2/0 3/6/0 5/4/0 0/9/0 4/5/0 

MN 4/3/0 3/4/0 0/7/0 1/6/0 1/6/0 

Total (+/=/-) 20/13/0 12/21/0 14/18/1 12/21/0 10/23/0 
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Rosenbroc

k 

0 Mean 

StdDev 

Best 

1852863.95

60 

811776.243
1 

410660.388

4 

28.7127109

19 

0.52773504
6 

2.72733E+0

1 

1.4617620

80 

1.9211317
49 

8.04386E-

22 

0.9302122

33 

1.6861528
63 

6.27580E-

22* 
 

 

 

 

 

 

 

In Table 3, we analyzed the effect of each operator 

introduced in our work independently and compared them 

with standard GA and proposed EGA to measure 

improvements obtained by each operator. To achieve this, 

different versions of GA have run on five test-beds for a 

maximum of 500,000 iterations. According to Table 3, 

improvements obtained using proposed operators are clear, 

and they become clearer, when the hardness of test function 

grows higher, like Rosenbrock function. Assuming GA1 as 

a base algorithm, GA2 performs better (Kowalik (GA1: 

0.000406713 ➔ GA2: 0.000320809), Rosenbrock (GA1: 

410660.3884 ➔ GA2: 2.72733E+01)) or at least 

competitive (Beale (GA1: 1.52144E-08 ➔ GA2: 3.08371E-

08), Booth (GA1: 1.96679E-11 ➔ GA2: 5.35202E-11), 

Colville (GA1: 1.56804E-03 ➔ GA2: 2.30417E-04)) with 

GA1 which indicates better performance of proposed Two-

Math crossover in comparison with two-point crossover. 

GA3 is far better than both GA1 & GA2 by holding a large 

edge in all test cases (i.e. Colville (GA2: 2.30417E-04 ➔ 

GA3: 1.24546E-22), Rosenbrock (GA2: 2.72733E+01 ➔ 

GA3: 8.04386E-22)) and thus, the impressive performance 

of NLS operator can be seen. Finally, the last column 

displays results obtained by the proposed EGA, where both 

Two-Math and NLS operators are used. As results show in 

Table 3, EGA outperforms other GA versions used in the 

experiment. Comparing EGA with GA3, again the 

performance of proposed Two-Math crossover is clear 

where slightly better results obtained by EGA (Booth (GA3: 

5.50625E-27 ➔ EGA: 7.88861E-31), Colville (GA3: 

1.24546E-22 ➔ EGA: 8.79868E-23)). 

D. Summarized comparison of discussed algorithms 

Table 4 compares algorithms used in the current work in 

terms of accuracy, computational complexity and 

computational approach, while they share nearly similar 

implementation difficulty. Since metaheuristics are 

stochastic algorithms and meanwhile, the most time-

consuming part of a metaheuristic is the fitness function 

evaluation phase[20]. Therefore, the number of fitness 

function evaluations is usually used as a performance 

criterion in metaheuristic algorithms. Considering the fitness 

function evaluation metric, the lower computational 

complexity of PS, SA, and VS is because of their single-

solution based approach, where fewer function evaluations 

are required. PSO2011, ABC and EGA algorithms are 

population-based approaches and their higher computational 

complexity is meaningful. In Table 4, based on results 

provided in Table 1, the accuracy of algorithms is 

represented by a fraction of times the algorithm successfully 

reached the global best point for benchmark functions where 

formulation can be written as: 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑓𝑜𝑢𝑛𝑑 𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
      (3) 

Using the formula (3), fractions for algorithms are as 

SA(
17

33
), PS(

21

33
), VS(

26

33
), PSO2011(

27

33
), ABC(

22

33
), EGA(

32

33
). 

As can be understood from Table 4, the proposed EGA 

algorithm noticeably has the highest accuracy of 97% among 

the other algorithms in cost of higher computational 

complexity, while the second-best algorithm is PSO2011 

with an accuracy of 82% which has considerable difference 

compared with EGA. 

IV.  CONCLUSIONS 

This paper introduced the EGA that utilizes two new 

operators introduced in this paper, namely the NLS and 

Two-Math, which is and may be used for other bound-

constraint numerical function optimization problems. The 

NLS operator utilizes a CV of length N that helps to rapidly 

find the best possible state and accurate optimum point for 

the existing individuals and thus effectively guides the 

overall search process toward the global optimum point. The 

NLS operator is quite simple and does not require any 

additional parameters and has rapid convergence behavior. 

Furthermore, the Two-Math crossover operator is used to 

effectively explore the continuous search space by first 

spreading good gens through produced offspring and then 

applying the mathematical crossover technique with the 

probability of 𝜌𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 , to the same produced offspring. 

The EGA algorithm is tested over a large set of 33 

benchmark functions that comprise unimodal, multimodal, 

separable and non-separable problems of different 

dimensions. The results are compared to both single-

solution based metaheuristics (SA, PS and VS) and 

population-based metaheuristics (PSO2011, ABC and GA); 

the results revealed that besides its simplicity, the proposed 

EGA algorithm is also highly competitive when compared 

to the performance of the other algorithms. The proposed 

algorithm is quite simple and uses fixed values for crossover 

rate and CV parameters as represented in algorithm settings. 

Accuracy of the proposed EGA algorithm makes it the right 

candidate for the solution of real-life optimization problems. 

In future studies, the proposed EGA algorithm will be 

improved to handle constraint optimization problems. The 

Table 4 

Comparing the advantages and disadvantages of algorithms used in the 

current work. 
N= Number of iterations, P= Population size, CS: Chromosome Size, 

CVL= Calibration Vector Length 

SB= Single Solution-Based, PB= Population-Based 

 SA PS VS 
PSO20

11 
ABC EGA 

Accurac

y 
53% 64% 79% 82% 67% 97% 

Computa

tional 

Complex
ity 

O(N) O(N) O(N) O(N*P) O(N*P) O(N*CS*CVL) 

Computa

tional 

approach 

SB SB SB PB PB PB 
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EGA algorithm will also be applied to some real-life 

optimizations including engineering optimization problems.  
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آورد. مسائل به بهترین وجه ممکن کارآمدی در می ،فرآیندی است که مسائل را تا آنجائیکه امکان داشته باشدسازی چکیده: بهینه

های گیرد. رشد استفاده از الگوریتمای مختلفی از قبیل اقتصاد، علوم، صنایع و مهندسی مورد استفاده قرار میهسازی در زمینهبهینه

هستند.  نیز هافناوری خواهان استفاده از این الگوریتم مختلف دیگر از جملههای گران در زمینهسازی بحدی رسیده است که پژوهشبهینه

اند ولی بدست آوردن نتایج با کیفیت و دقت بالا هنوز از چالشهای پیش رو های زیادی معرفی شدهالگوریتم ،سازی مسائلبرای بهینه

. در این مقاله برای بهبود کارایی الگوریتم ژنتیک هستند شناخته شده ،ی سختسازمسائل بهینه درفراابتکاری های الگوریتم. است

(GA) سازی توابع عددی دو عملگر جدید بنامهای بعنوان یک الگوریتم فراابتکاری، برای بدست آوردن نتایجی با کیفیت بالاتر در بهینه

رقمی الهام گرفته شده  Nاز الگوی قفل ترکیبی  NLSعملگر  .تلاقی دو نقطه حسابی ارائه شده استو  (NLS)رقمی  Nجستجوی قفل 

دو نقطه و  تلاقی تکنیکهایبا  دومدهد و عملگر الگوریتم ژنتیک را با تنظیم بهترین راه حل جاری بهبود می که رفتار استثماری است

تابع ریاضی  33روی  (EGA)الگوریتم ژنتیک بهبود داده شده  می کند. و پردازش ترکیب ،بهترکلی  جستجوی هدایتدر جهت  حسابی

سازی نتایج بدست آمده با برخی از الگوریتم های مبتنی بر جمعیت مانند بهینه .زن مورد تست و ارزیابی قرار گرفتع محکببعنوان توا

و  (SA)سازی تبرید الگوریتم شبیهنند ما یک جوابو الگوریتم های مبتنی بر  (ABC)کلونی زنبور عسل ازدحام ذرات و الگوریتم 

نسبت به  EGAالگوریتم عملکرد . نتایج نشان داد که کارایی مورد مقایسه قرار گرفت (VA) یو جستجوی  گرداب (PS) جستجوی الگو

تقریبا برای تمامی  بهترین نقاط بهینه سراسری را EGAنتایج نشان داد که الگوریتم بهتر است. بعلاوه  مورد مقایسههای بقیه الگوریتم

   پیدا می کند. موجودگر لبا استفاده از مقادیر ثابت برای دو عملگر از سه عم تابع مورد تست 33
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