

Journal of Soft Computing and Information Technology (JSCIT)

Babol Noshirvani University of Technology, Babol, Iran

Journal Homepage: www.jscit.nit.ac.ir

Volume 9, Number 1, Spring 2020, pp. 28-35

Received: 12/01/2018; Revised: 01/31/2020; Accepted: 02/13/2020

28

EGA: An Enhanced Genetic Algorithm for Numerical

Functions Optimization

Kiumars Ghazipour1, Asadollah Shahbahrami2*

1-Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.

2-Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.
1 ghazipour.k@gmail.com, 2* shahbahrami@guilan.ac.ir

Corresponding author’s address: Asadollah Shahbahrami, Department of Computer Engineering, Faculty of Engineering,

University of Guilan, Rasht, Iran.

Abstract- Optimization is the process of making something as good or effective as possible. Optimization

problems are used over many fields such as economics, science, industry and engineering. The growing use of

optimization makes it essential for researchers in every branch of science and technology. To solve optimization

problems many algorithms have been introduced, while achieving a higher quality of results in terms of accuracy

and robustness is still an issue. Metaheuristics are widely recognized as efficient approaches for many hard

optimization problems. In this study, to achieve a higher quality of results in numerical functions optimization,

two new operators named N-digit lock search (NLS) and Two-Math crossover are introduced to enhance the

genetic algorithm (GA) as a widely used metaheuristic. The NLS operator is inspired by the N-digit combination

lock pattern and enhances the exploitative behavior of the GA by calibrating the current best solution and the

relatively new Two-Math crossover operator combines both two-point and arithmetic crossover techniques to

guide the overall search process better. The proposed enhanced genetic algorithm (EGA) is tested over 33

benchmark mathematical functions and the results are compared to some population-based, particle swarm

optimization (PSO2011) and artificial bee colony (ABC) algorithms, and single-solution based, simulated

annealing (SA), pattern search (PS), and vortex search (VS). A problem-based test is performed to compare the

performance of the algorithms, which results shows the proposed EGA outperforms all other algorithms, SA, PS,

VS, PSO2011 and ABC. In addition, it surprisingly finds the global best points for almost all 33 test functions

with a constant value for 2 out of 3 EGA operators.

Keywords- Metaheuristics, Genetic algorithm, Function optimization, Global optimization.

I. INTRODUCTION

Hard optimization problems are problems that cannot be

solved to optimality, or any guaranteed bound, by any exact,

deterministic method within a ‘‘reasonable’’ time limit.

These problems can be divided into several categories. To

find acceptable solutions for these types of problems, we can

use metaheuristics. A metaheuristic is an algorithm designed

to solve approximately a wide range of hard optimization

problems without having to adapt to each problem deeply

[1].

Metaheuristics are mainly classified and studied under two

major categories, single-solution based and population-

based [1, 2]. Single-solution based metaheuristics, are based

on a single solution and include local search-based

metaheuristics such as simulated annealing (SA)[3, 4],

pattern search (PS) [5], and random search (RS) [6]. In

population-based metaheuristics, first, a number of solutions

are created and then updated continuously until the

termination condition is met. Population-based

metaheuristics are generally studied under two major

groups: evolutionary algorithms and swarm-based

algorithms. Fig. 1 depicts a visual categorization of these

metaheuristics.

Although many metaheuristic algorithms have been

introduced so far, works to provide a metaheuristic

algorithm to get higher accuracy of results for the problems

in hand continues in the research field [7-9], and achieving

higher accuracy of results is still an issue.

Among other metaheuristics, a genetic algorithm (GA) [10]

http://www.jscit.nit.ac.ir/
mailto:ghazipour.k@gmail.com
mailto:shahbahrami@guilan.ac.ir

Journal of Soft Computing and Information Technology (JSCIT) ………………………...…Vol. 9, No. 1, Spring 2020

29

is arguably the most well-known and mostly used

metaheuristic. The power of GAs comes from the fact that

the technique is robust and can deal successfully with a wide

range of problem areas including those which are difficult

for other methods to solve. However, in some hard to

optimize problems, GA usually finds near-global optimum

but after some generations cannot offer further improvement

even if a large number of generations are produced. Finally,

at the end of the execution of GA, there is no guaranty to

find the global best or at least the best possible solution using

the currently found ones.

In this study we propose an enhanced genetic algorithm

(EGA) which utilizes two new operators, namely, N-digit

lock search (NLS), and a relatively new hybrid crossover

operator named Two-Math crossover to solve bound-

constrained global optimization problems. Here, the

proposed NLS and Two-Math operators are applied to the

standard continuous genetic algorithm as operators and

results show that the proposed EGA considerably improves

the performance of the search process and finds almost all

the global best points for test functions. The proposed EGA

is tested over the 33 well-known benchmark functions, and

the results were compared to SA, PS, PSO2011[11],

ABC[12], and VS[13] algorithms, where EGA was found to

outperform all these algorithms.

The remaining part of the paper is organized as

follows. Section 2 demonstrates the proposed EGA

algorithm. Section 3 covers the experimental results

and discussion. Finally, section 4 concludes the work.

II. THE PROPOSED EGA

 The proposed EGA is comprised of GA and two new

operators introduced in the present work, namely the NLS

and the Two-Math crossover. After initializing the

population, using the roulette wheel selection method, the

fittest parents will be selected to undergo the mating process.

The mating process takes place by applying Two-Math

crossover to form two high-quality offspring. The Two-

Math crossover consists of two phases: first, by spreading

good gens using two-point crossover, and second, by

applying the arithmetic crossover with the probability of

ρ arithmetic to the same offspring to adjust them to diverse the

population and find new promising solutions in the

continuous search space. Afterward, some offspring will

undergo the mutation process with the probability of pm.

Then, the NLS operator works on the best solution found so

far “Sbest” and tries to tune it to reach the best fitness

available for Sbest. Finally, the tuned Sbest is inserted E

time into the new population to fulfill elitism. E is a

parameter into adjusting elitism which could be set from 1

to N where N is the population size. We had determined the

value of E by parameter tuning to find the best degree of

elitism that works best by EGA. Our elitism strategy takes

place by inserting Sbest E times into the population, instead

of selecting and inserting E best individuals. Using high

values for E leads the population to stuck in a local optimum

and/or behave randomly. Assuming E=1 is a typical elitism

strategy that is commonly used by elitism-based GAs. We

found E=3 a compromise point where both faster

convergence and local optima avoidance are obtained. In the

middle stages of EGA, thanks to the roulette wheel selection

method, the population will be full of the fittest solutions

found so far, which are likely very similar to the Sbest and

so, faster convergence to either local or global optimum

point is achieved. Here if Sbest is global optima, it is done,

and if the Sbest is local optima, then because of population-

based approach and variation operators (mostly the

mutation), new variants of Sbest will be generated. Resulted

in Sbest variations (after applying the NLS operator) are

either better or worse than Sbest itself. Here, by inserting

better Sbest variations into the population and repeating the

evolution process, the total solutions will be guided towards

the global optimum point. Fig. 2. describes the proposed

EGA.

A. Methodology

1) Initial population and chromosome representation

Given an initial population of N chromosomes, the initial

values for each gen is generated by uniformly distributed

random real values as below:

𝑥𝑖(𝑘) ← 𝑈[𝑥𝑚𝑖𝑛(𝑘) … 𝑥𝑚𝑎𝑥(𝑘)] . (1)

𝑓𝑜𝑟 𝑖 𝜖 [1 … 𝑁]𝑎𝑛𝑑 𝑘 𝜖 [1 … 𝑛] .

Where 𝑥 is a vector of individuals of size N; U is the uniform

random real number generator, and 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are

lower and upper bounds for generated numbers. In the

present study, the real coded representation method is

adopted, in which each continuous variable holds a real

number [14].

2) Elitist strategy and selection method

In the proposed EGA, a new elitism strategy named

elitism of degree E is used, where E is the number of times

M
et

ah
eu

ri
st

ic
s Single-Solution

based
Simulated Annealing, Tabu Search, Pattern Search, Random Search, Iterated

Local Search, Guided Local Search, Variable Neighborhood Search

Population-
based

Evolutionary
Genetic Algorithm, Differential Evolution, Estimation of

Distribution Algorithms

Swarm-based
Ant Colony Optimization, Particle Swarm Optimization,

Artificial Bee Colony algorithm

Fig. 1. Visual categorization of metaheuristics mentioned in this paper.

EGA: an enhanced genetic algorithm for numerical functions optimization………………Ghazipour and Shahbahrami

30

the elite individual “Sbest” is inserted into the new

population in each iteration. Inserting the E elite individuals

into the new population takes place by replacing them with

E random individuals which already exist in the population.

For the selection process we adopted the roulette wheel

method [15, 16] since the roulette wheel can ensure a faster

convergence to either local or global optimum point.

3) Two-Math crossover method

In the present work, a relatively new hybrid crossover

named Two-Math is introduced by combining the two-point

and arithmetic crossover methods. These methods are

utilized as a single crossover operator. In this Two-Math

crossover as it can be understood from the name, we first

apply two-point crossover to spread good gens through

chromosomes and produce two offspring by the mating

process. Then arithmetic crossover which is essentially

designed to use in continuous GA, is applied to the same two

produced offspring with the probability of 𝜌𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 ,

where we found 𝜌𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 = 0.01 by parameter tuning.

Fig. 3. describes the Two-Math crossover method.

4) Mutation method

In the present work we used a uniform mutation [17].

The formulation can be written as:

 𝑟 ← 𝑈[0. . 1]

𝑥𝑖(𝑘) ← {
𝑥𝑖(𝑘). 𝑖𝑓 𝑟 ≥ 𝜌

𝑈[𝑥𝑚𝑖𝑛(𝑘). 𝑥𝑚𝑎𝑥(𝑘)]. 𝑖𝑓 𝑟 < 𝜌

𝑓𝑜𝑟 𝑖 𝜖 [1. . 𝑁]𝑎𝑛𝑑 𝑘 𝜖 [1. . 𝑛].

5) Stopping criteria of EGA

The EGA is terminated after a 500000 prespecified

maximum number of generations. This number of iterations

is also applied in other algorithms which are used for

performance comparison.

6) The NLS operator

The NLS operator is inspired by the N-digit combinational

lock pattern and is used to improve the exploitative behavior

of GA. Fig. 4. demonstrates a typical 10-digit combinational

lock. In decimal representation, every digit of any number

consists of digits ranging from 0 to 9. Considering the

optimization of the continuous function, the same rule

applies to the real numbers which are used as the value of

the optimization functions variables. Like a combinational

lock, in NLS the goal is to find the best digits for an N-digit

solution of a numerical optimization function. In NLS,

instead of the brute force search that happens while guessing

the combinational lock password, a priority numerical

search is used. It begins from calibrating the most significant

digit of Sbest to less significant one using a vector of fixed

values of length N that we call it the calibration vector (CV).

The search process keeps calibrating Sbest in a way that

fitness value for Sbest continually improves, until no

improvement is available to Sbest. Fig. 5. Depicts a sample

CV of length 10. The CV initialization could be varied

according to the type of target problems and the amount of

precision required. The NLS operator starts with Sbest, then

attempts to find a better solution by making either an

incremental or decremental change to the Sbest. Changes are

made by means of adding or subtracting the whole CV

values with Sbest starting from CV[0] to CV[N] in which

better fitness is gained. If the change produced a better

solution, another incremental or decremental change is made

to the Sbest, and so on, until no further improvements can be

achieved. As a result, rapid convergence to the best possible

improvement available for Sbest is achieved. Fig. 6. shows

the NLS pseudo code.

No. 1 2 3 4 5 6 7 8 9 10

Value 4.0 2.0 1.0 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001
Fig. 5. Sample calibration vector of length 10

(2)

Fig. 4. A typical 10-digit combinational lock pad

Parents  {randomly generated population}

While (maximum number of iterations is not reached)

 Calculate the fitness of each parent in the population
 Elite  Best parent

 Children  0

 While | Children | < | Parents |
 Use fitnesses to probabilistically select a pair of parents for mating using roulette wheel selection method

 Mate the parents to create children c1 and c2 using Two-Math crossover

 Children  Children U {c1, c2}
 Loop

 Randomly mutate some of the children

 Apply NLS to the Elite individual

 Parents  Children U Elite E Times //insert elite individual (Sbest) E times into the population

 Parents  Best N Parents

Next generation

Fig. 2. The proposed EGA pseudo code

Fig. 3. Two-Math crossover pseudo code

Journal of Soft Computing and Information Technology (JSCIT) ………………………...…Vol. 9, No. 1, Spring 2020

31

Figs 7, 8, and 9 display fitness values for the 2-dimensional

booth, and 30-dimensional SumSquares and DixonPrice test

functions after 100 iterations respectively. Precision values

represent the CV length (ranging from 0 to 30) utilized by

the NLS operator. Since the precision value of “0”, means

running the simple GA without using the NLS operator,

dramatic improvement can be seen using the CV length of

only “1” over the max of 100 iterations. Furthermore, using

the same number of iterations, results from applying CV of

length 30 is outstanding, so that Booth, SumSquares and

DixonPrice fitness values range from (0.015434858 to

3.15544E-30), (29516.6809 to 0.0) and (122522.3830 to

8.77608E-30) respectively.

Inputs: Initialized Calibration Vector “CV” (i.e. Fig. 5.)

 Best solution found so far “Sbest”

 Chromosome Size “CS”
i = 0;

S = Sbest

Repeat

Set direction (either to “+” or “-“) in which improvement is available to the S

 Repeat

 Starting from CV[0] to CV[N], apply whole CV to S(i) either by adding or subtracting depending on the current direction
 While (improvement is available for S(i)) //so fitness value for whole S will be improved

 i++;

While i < CS
Sbest = S

Output: Sbest as the best solution achieved

Fig. 6. The NLS operator pseudo code

0
.0

1
5

4
3

4
8

5
8

7
.9

2
3

7
8E

-0
3

1
.0

1
4

3
5E

-0
3

2
.7

6
5

0
0E

-0
4

1
.4

8
6

9
3E

-0
6

5
.8

4
0

1
8

E-
0

8

4
.8

5
1

4
6

E-
1

0

1
.0

2
8

9
5

E-
1

2

5
.5

9
9

1
3

E-
1

4

1
.0

8
9

2
5

E-
1

6

3
.3

1
2

7
8

E-
1

8

6
.3

0
5

7
7

E-
2

1

8.
45

50
3

E-
2

2

5
.8

5
1

7
7

E-
2

4

1
.1

7
0

4
3

E-
2

6

1
.2

9
3

7
3

E-
2

8

1
.0

0
9

7
4

E-
2

8

6
.7

0
5

3
2

E-
2

9

5
.6

7
9

8
0

E-
2

9

5
.6

7
9

8
0

E-
2

9

5
.6

7
9

8
0

E-
2

9

4
.1

0
2

0
8

E-
2

9

4
.1

0
2

0
8

E-
2

9

4
.1

0
2

0
8

E-
2

9

2
.5

2
4

3
5

E-
2

9

2
.5

2
4

3
5

E-
2

9

2
.5

2
4

3
5

E-
2

9

1
.5

7
7

7
2

E-
2

9

1
.5

7
7

7
2

E-
2

9

6.
31

08
9

E-
3

0

3
.1

5
5

4
4

E-
3

0

0.000

0.005

0.010

0.015

0.020

0 5 10 15 20 25 30

Fi
tn

es
 V

al
u

e

Precision

Booth

Fig. 7. Running the EGA for max of 100 iterations over 2-domensional Booth function using CV length ranging from 0 to 30,

which 0 means to not apply NLS operator.

29
51

6.
68

0
9

4.
68

24
3E

-0
1

4.
68

72
7E

-0
3

1.
15

28
3E

-0
3

4.
73

16
9E

-0
5

1.
15

13
7E

-0
7

3.
99

61
9E

-0
8

4.
86

93
4E

-1
2

2.
03

55
6E

-1
3

4.
95

26
2E

-1
7

1.
13

93
0E

-1
7

3.
17

55
6E

-1
9

6.
44

47
8E

-2
6

2.
73

05
8E

-2
6

1.
92

21
8E

-2
7

3.
56

34
6E

-3
0

2.
15

66
8E

-3
2

9.
04

66
6E

-3
4

3.
82

52
4E

-3
6

3.
97

75
8E

-4
0

3.
36

52
4E

-4
3

1.
43

53
0E

-4
3

4.
11

73
4E

-4
5

2.
38

24
2E

-4
7

2.
57

77
0E

-5
0

3.
21

47
3E

-5
2

8.
96

62
2E

-5
4

3.
48

54
5E

-5
6

3.
08

93
8E

-5
7

0.
00

00
0E

+0
0

0.
00

00
0E

+0
0

0

6,000

12,000

18,000

24,000

30,000

0 5 10 15 20 25 30

Fi
tn

es
s

va
lu

e

Precision

SomeSquares

Fig. 8. Running the EGA for max of 100 iterations over 30-domensional SumSquares function using CV length ranging from 0

to 30, which 0 means to not apply NLS operator.

Fig. 9. Running the EGA for max of 100 iterations over 30-domensional DixonPrice function using CV length ranging from 0 to

30, which 0 means to not apply NLS operator.

12
25

22
.3

8
30

3.
6

83
8

0E
+

0
1

1.
83

4
9

9E
+

0
0

3
.4

8
48

0E
-0

2

2
.0

9
66

6E
-0

4

2
.5

3
79

9E
-0

6

6
.4

5
82

8E
-0

8

2
.9

3
58

9E
-1

0

2
.4

8
02

8E
-1

2

3.
70

84
9E

-1
4

2.
19

94
6E

-1
6

5
.3

6
97

9E
-1

8

3
.7

6
65

9E
-2

0

3
.6

1
06

0E
-2

2

3
.5

1
89

6E
-2

4

5
.3

7
67

1E
-2

6

3
.6

4
65

1E
-2

8

1
.7

1
33

1E
-2

9

1
.7

1
08

4E
-2

9

1
.7

1
08

4E
-2

9

1
.5

9
25

1E
-2

9

1
.4

3
96

7E
-2

9

1
.3

5
09

2E
-2

9

1
.2

8
19

0E
-2

9

1
.2

8
19

0E
-2

9

1
.1

5
86

4E
-2

9

1
.1

5
86

4E
-2

9

1
.1

5
86

4E
-2

9

9
.3

6
77

2E
-3

0

9
.3

6
77

2E
-3

0

8
.7

7
60

8E
-3

0

0

30,000

60,000

90,000

120,000

150,000

0 5 10 15 20 25 30

Fi
tn

es
s

V
al

u
e

Precision

DixonPrice

EGA: an enhanced genetic algorithm for numerical functions optimization………………Ghazipour and Shahbahrami

32

 Table 1

Statistical results of 30 runs obtained by SA, PS, PSO2011, ABC, VS and EGA algorithms (values < 10-16 are considered as 0). Where best values

found by algorithms are global optima, they marked with “*”. C: Characteristics, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable
Test bed C Min. SA PS PSO2011 ABC VS EGA

Stepint US 0 Mean

StdDev

Best

1.866666667

1.136641554

0*

0

0

0*

0

0

0*

0

0

0*

0

0

0*

0

0

0*

Step US 0 Mean

StdDev

Best

0

0

0*

0

0

0*

0.066666667

0.253708132

0*

0

0

0*

0.2

0.406838102

0*

0

0

0*

Sphere US 0 Mean

StdDev

Best

0

0

0*

0

0

0*

0

0

0*

2.75098E-16

0

2.23487E-16

0

0

0*

0

0

0*

SumSquares US 0 Mean

StdDev

Best

0

0

0*

0

0

0*

0

0

0*

2.75098E-16

0

1.85594E-16

0

0

0*

0

0

0*

Quartic US 0 Mean

StdDev

Best

0.4028326

0.301544881

0.001414536

0.049370406

0.046578461

1.61333E-05

1.64098E-05

5.56581E-06

7.13993E-06

0.013732963

0.002379448

0.008413424

0.000145026

7.30549E-05

5.54996E-05

7.38312E-05

1.069E-04

5.81378E-06

Beale UN 0 Mean

StdDev

Best

0.000430475

0.000943865

2.51078E-08

0

0

0*

0

0

0*

6.37598E-16

3.58687E-16

0*

0

0

0*

0

0

0*

Easom UN -1 Mean

StdDev

Best

-0.028827505

0.157894721

-0.864825008

-8.11022E-05

0

-8.11022E-05

-1

0

-1*

-1

0

-1*

-1

0

-1*

-1

0

-1*

Matyas UN 0 Mean

StdDev

Best

0

0

0*

0

0

0*

0

0

0*

0

0

0*

0

0

0*

0

0

0*

Colville UN 0 Mean

StdDev

Best

1.83377047

2.351638954

0.000971812

0.002199995

0

0.002199995

0

0

0*

0.00576453

0.003966867

0.000383073

0

0

0*

0

0

0*

Trid6 UN -50 Mean

StdDev

Best

-49.84789091

0.150775917

-49.98701123

-50

0

-50*

-50

3.61345E-14

-50*

-50

4.94748E-14

-50*

-50

2.96215E-14

-50*

-50

1.67649E-12

-50*

Trid10 UN -210 Mean

StdDev

Best

209.5023223

0.230476381

-209.8801988

-209.9954224

0

-209.9954224

-210

2.30778E-13

-210*

-210

9.62204E-12

-210*

-210

6.19774E-13

-210*

-210

5.70687E-11

-210*

Zakharov UN 0 Mean

StdDev

Best

0

0

0*

0

0

0*

0

0

0*

7.56674E-14

3.76382E-14

2.31887E-14

0

0

0*

0

0

0*

Powell UN 0 Mean

StdDev

Best

0

0

0*

0

0

0*

2.04664E-07

1.21051E-08

1.72679E-07

9.09913E-05

1.42475E-05

.23427E-05

1.43967E-05

2.27742E-06

5.71959E-06

0

0

0*

Schwefel 2.22 UN 0 Mean

StdDev

Best

0

0

0*

0

0

0*

1.094284383

0.870781136

0.107097937

8.51365E-16

0

8.51365E-16

0

0

0*

0

0

0*

Schwefel 1.2 UN 0 Mean

StdDev

Best

0

0

0*

0

0

0*

0

0

0*

0.000760232

0.000440926

0.00027179

0

0

0*

0

0

0*

Rosenbrock UN 0 Mean

StdDev

Best

0.224618742

0.097171414

0.082077849

9.84185348

0

9.84185348

0.930212233

1.714978077

0*

0.003535257

0.003314818

7.08757E-05

0.367860114

1.130879848

9.42587E-05

0.930212233

1.686152863

0*

Dixon-Price UN 0 Mean

StdDev

Best

0.990721802

0.029412712

0.871516993

0.666666667

0

0.666666667

0.666666667

4.38309E-16

0.666666667

1.91607E-15

2.55403E-16

1.1447E-15

0.666666667

7.68909E-16

0.666666667

0

0

0*

Foxholes MS 0.998003838 Mean

StdDev

Best

5.5682975

4.367922182

0.998003838*

0.998003838

4.51681E-16

0.998003838*

34.26621987

126.6004794

0.998003838*

0.998003933

4.33771E-07

0.998003838*

0.998003838

0

0.998003838*

0.998003838

0

0.998003838*

Branin MS 0.397887358 Mean

StdDev

Best

0.398269177

0.001624387

0.397887361

0.397887358

0

0.397887358*

0.397887358

0

0.397887358*

0.397887358

0

0.397887358*

0.397887358

0

0.397887358*

0.397887358

5.99931E-16

0.397887358*

Bohachevsky1 MS 0 Mean

StdDev

Best

0

0

0*

0

0

0*

0

0

0*

0

0

0*

0

0

0*

0

0

0*

Booth MS 0 Mean

StdDev

Best

5.28496E-05

7.35674E-05

7.35674E-05

0

0

0*

0

0

0*

0

0

0*

0

0

0*

0

0

0*

Rastrigin MS 0 Mean

StdDev

Best

0

0

0*

0

0

0*

26.11016129

5.686650032

16.91429893

0

0

0*

57.60799224

13.94980276

13.94980276

0

0

0*

Schwefel MS -12569.48662 Mean

StdDev

Best

-1891.275468

137.3913021

-2188.304761

-3686.285205

2.77513E-12

-3686.285205

-8316.185447

463.9606712

-9466.201047

-12569.48662

1.85009E-12

-12569.48662*

-11283.05416

352.1869262

-11799.62928

-12569.48662

1.81899E-12

-12569.48662*

Michalewicz2 MS -1.80130341 Mean

StdDev

Best

1.792778285

0.043874926

-1.801296643

-1.80130341

1.35504E-15

-1.80130341*

-1.80130341

9.03362E-16

-1.80130341*

-1.80130341

9.03362E-16

-1.80130341*

-1.80130341

9.03362E-16

-1.80130341*

-1.80130341

6.66134E-16

-1.80130341*

Michalewicz5 MS -4.687658179 Mean

StdDev

Best

-3.670604734

0.496257736

-4.684023442

-4.495893207

2.71009E-15

-4.495893207

-4.67700874

0.036487971

-4.687658179*

-4.687658179

2.60778E-15

-4.687658179*

-4.670953055

0.020809276

-4.687658179*

-4.681228926

0.034622588

-4.687658179*

Michalewicz10 MS -9.660151716 Mean

StdDev

Best

-6.060491565

0.504024688

-6.880235805

-8.461507306

5.42017E-15

-8.461507306

-9.204154798

0.298287637

-9.660151716*

-9.660151716

0

-9.660151716*

-8.793361668

0.382153549

-9.410563187

-9.660151716

4.91851E-15

-9.660151716*

Schaffer MN 0 Mean

StdDev

Best

0

0

0*

0

0

0*

0

0

0*

0

0

0*

0

0

0*

0

0

0*

Six Hump

Camel Back

MN -1.031628453 Mean

StdDev

Best

-1.031621639

2.1595E-05

-1.031628448

-1.031628453

4.51681E-16

-1.031628453*

-1.031628453

6.71219E-16

-1.031628453*

-1.031628453

6.77522E-16

-1.031628453*

-1.031628453

6.77522E-16

-1.031628453*

-1.031628453

0

-1.031628453*

Bohachevsky2 MN 0 Mean

StdDev

Best

0

0

0*

0

0

0*

0

0

0*

0

0

0*

0

0

0*

0

0

0*

Bohachevsky3 MN 0 Mean

StdDev

Best

0

0

0*

0

0

0*

0

0

0*

0

0

0*

0

0

0*

0

0

0*

Shubert MN -186.7309088 Mean

StdDev

Best

-186.7309087

5.76173E-07

-186.7309088*

-123.5767709

0

-123.5767709

-186.7309088

4.49449E-13

-186.7309088*

-186.7309088

1.18015E-14

-186.7309088*

-186.7309088

1.18015E-14

-186.7309088*

-186.7309088

2.84217E-14

-186.7309088*

GoldStein-

Price

MN 3 Mean

StdDev

Best

3.000000254

4.36073E-07

3*

30

1.08403E-14

30

3

1.22871E-15

3*

3

1.7916E-15

3*

3

1.44961E-15

3*

3

2.61436E-14

3*

Kowalik MN 0.000307486 Mean

StdDev

Best

0.002635099

0.001644496

0.000780214

0.00031966

0

0.00031966

0.000307486

0

0.000307486*

0.000319345

5.4385E-06

0.00030894

0.000307486

0

0.000307486*

0.000307486

0

0.000307486*

Journal of Soft Computing and Information Technology (JSCIT) ………………………...…Vol. 9, No. 1, Spring 2020

33

III. EXPERIMENTAL RESULTS

The proposed EGA algorithm is tested over 33 benchmark

functions, that are obtained from the study performed by

Doğan and Ölmez [13]. They compared the performance of

the VS algorithm to the SA, PS, PSO2011 and ABC

algorithms. We have compared the performance of the

proposed approach to the mentioned algorithms using the

same benchmark. SA and PS are two well-known single-

solution based algorithms, and PSO2011 is an extension of

the standard PSO algorithm.

For evaluation, the overall performances of the algorithms

are studied for a constant number of iterations. After a

certain number of iterations, the algorithms are evaluated

according to the mean and the best fitness values found for

each benchmark function.

A. Algorithm settings

Population-based metaheuristics (ABC, PSO2011, EGA)

are selected to have a population size of 50. For the proposed

EGA algorithm, crossover and CV parameters are set to the

fixed value of 0.9 and 14 respectively, and mutation rates are

set as (Kowalik: 1.0), (Quartic-Easom-Schwefel-

Michalewicz5-Michalewicz10-Bohachevsky2-

Bohachevsky3-Shubert: 0.8), (Rastrigin- Schaffer: 0.1), (the

rest of functions: 0.5). The number of neighborhood

solutions of the VS algorithm is set to 50. The SA algorithm

always performs with a single solution, and the PS algorithm

creates its own neighbor vectors (pattern). The acceleration

coefficients (c1 and c2) of the PSO2011 algorithm are both

set to 1.8, and the inertia coefficient is set to 0.6, as in [18].

The limit value for the ABC algorithm is determined as limit

= SN ⁄ D, where SN represents the number of food sources

and D represents the dimension. The maximum number of

iterations is selected as 500,000 to evaluate the overall

performances of the algorithms.

B. Overall performances of the algorithms

The proposed EGA algorithm is compared to the SA, PS,

PSO2011, ABC and VS algorithms, using the 33 benchmark

functions given in Table 1. For each algorithm, 30 different

runs are performed, and the mean and the best fitness values

are recorded. The maximum number of iterations is selected

to be 500,000, as mentioned previously. For the SA and PS

algorithms, the MATLAB® Global Optimization Toolbox

is used, and the other algorithms are also coded in

MATLAB®, except EGA which is coded in C#.Net. For

each algorithm, all of the functions are run in parallel using

an Intel® Corei5 CPU 8 GB RAM workstation.

Experimental results are presented in Table 1.

Most of the modern software development tools use an

arithmetic precision of 10-16 in the double-precision mode.

An arithmetic precision value that is higher than necessary,

makes it difficult to compare the local search abilities of the

algorithms [19]. For this purpose, during the pair-wise

comparison, resulting values below 10-16 are considered as

0. From Table 1, it can be shown that the EGA algorithm

outperforms the SA, PS, PSO2011, ABC and VS algorithms.

The SA algorithm performs a pure random search over the

search space for which obtained results become meaningful.

The PS algorithm is also a single-solution based algorithm

that performs poorly compared to the EGA algorithm. The

ABC algorithm is a powerful swarm-based algorithm that is

used successfully for the solution of many types of

optimization problems. For a number of functions, the ABC

algorithm fails to exceed the 10-16 limit. Once the algorithm

converges to a near-optimal point, the excellent local search

ability of the EGA algorithm can be seen, which helps the

algorithm to further improve the solution.

In Table 2, a problem-based (US, UN, MS and MN)

comparison of the algorithms is also provided. Each cell in

the Table 2 shows the total count of the three cases (+ ➔

Win / = ➔ Equal / - ➔ Loss). From Table 2, it can be shown

that, for MN (multimodal non-separable) functions, the

proposed EGA algorithm performs better than the other

algorithms. For UN (unimodal non-separable) functions the

proposed EGA algorithm again performs better than the

others. Thus, from these results it can be inferred that the

EGA algorithm performs better than other algorithms. For

MS (multimodal separable) functions the proposed EGA

algorithm again outperforms the other algorithms except for

the ABC algorithm. Finally, for US (unimodal separable)

functions the proposed EGA algorithm performs completely

better than other algorithms while being competitive with

the PSO2011 algorithm.

C. Analyzing the effect of proposed operators

Table 3

Comparing the effect of each proposed operator independently. For an

accurate comparison, exact values are displayed.
GA1: GA with two-point crossover.

GA2: GA with proposed Two-Math crossover.

GA3: GA with two-point crossover and proposed NLS operator.
EGA: Proposed algorithm.

Test bed Min. GA1 GA2 GA3 EGA

Beale 0 Mean

StdDev
Best

1.25927E-

07
8.28221E-

08

1.52144E-
08

1.00663E-

07
5.27296E-

08

3.08371E-
08

5.15487E-

25
1.53119E-

25

2.68522E-
25

4.79682E-

25
1.37906E-

25

2.21837E-
25*

Booth 0 Mean

StdDev

Best

4.33821E-

09

5.51052E-
09

1.96679E-

11

2.86155E-

09

3.61045E-
09

5.35202E-

11

2.97156E-

26

2.32237E-
26

5.50625E-

27

7.42323E-

27

1.91435E-
26

7.88861E-

31*

Colville 0 Mean

StdDev

Best

1.89115E-

01

0.15565469
6

1.56804E-

03

2.13100E-

01

0.16798380
9

2.30417E-

04

4.17146E-

22

1.82244E-
22

1.24546E-

22

3.74920E-

22

1.81417E-
22

8.79868E-

23*

Kowalik 0.000

30748

6

Mean

StdDev

Best

0.00059326

8

0.00010383
9

0.00040671

3

0.00048550

4

9.93076E-
05

0.00032080

9

0.0003074

86

6.64809E-
17

0.0003074

86

0.0003074

86

4.91747E-
17

0.0003074

86*

Table 2

Problem-based comparison of the proposed EGA algorithm.

Problem

type

EGA vs.

SA

EGA vs.

PS

EGA vs.

PSO2011

EGA vs.

ABC

EGA vs.

VS

US 2/3/0 1/4/0 1/3/1 3/2/0 2/3/0

UN 7/5/0 5/7/0 8/4/0 8/4/0 3/9/0

MS 7/2/0 3/6/0 5/4/0 0/9/0 4/5/0

MN 4/3/0 3/4/0 0/7/0 1/6/0 1/6/0

Total (+/=/-) 20/13/0 12/21/0 14/18/1 12/21/0 10/23/0

EGA: an enhanced genetic algorithm for numerical functions optimization………………Ghazipour and Shahbahrami

34

Rosenbroc

k

0 Mean

StdDev

Best

1852863.95

60

811776.243
1

410660.388

4

28.7127109

19

0.52773504
6

2.72733E+0

1

1.4617620

80

1.9211317
49

8.04386E-

22

0.9302122

33

1.6861528
63

6.27580E-

22*

In Table 3, we analyzed the effect of each operator

introduced in our work independently and compared them

with standard GA and proposed EGA to measure

improvements obtained by each operator. To achieve this,

different versions of GA have run on five test-beds for a

maximum of 500,000 iterations. According to Table 3,

improvements obtained using proposed operators are clear,

and they become clearer, when the hardness of test function

grows higher, like Rosenbrock function. Assuming GA1 as

a base algorithm, GA2 performs better (Kowalik (GA1:

0.000406713 ➔ GA2: 0.000320809), Rosenbrock (GA1:

410660.3884 ➔ GA2: 2.72733E+01)) or at least

competitive (Beale (GA1: 1.52144E-08 ➔ GA2: 3.08371E-

08), Booth (GA1: 1.96679E-11 ➔ GA2: 5.35202E-11),

Colville (GA1: 1.56804E-03 ➔ GA2: 2.30417E-04)) with

GA1 which indicates better performance of proposed Two-

Math crossover in comparison with two-point crossover.

GA3 is far better than both GA1 & GA2 by holding a large

edge in all test cases (i.e. Colville (GA2: 2.30417E-04 ➔

GA3: 1.24546E-22), Rosenbrock (GA2: 2.72733E+01 ➔

GA3: 8.04386E-22)) and thus, the impressive performance

of NLS operator can be seen. Finally, the last column

displays results obtained by the proposed EGA, where both

Two-Math and NLS operators are used. As results show in

Table 3, EGA outperforms other GA versions used in the

experiment. Comparing EGA with GA3, again the

performance of proposed Two-Math crossover is clear

where slightly better results obtained by EGA (Booth (GA3:

5.50625E-27 ➔ EGA: 7.88861E-31), Colville (GA3:

1.24546E-22 ➔ EGA: 8.79868E-23)).

D. Summarized comparison of discussed algorithms

Table 4 compares algorithms used in the current work in

terms of accuracy, computational complexity and

computational approach, while they share nearly similar

implementation difficulty. Since metaheuristics are

stochastic algorithms and meanwhile, the most time-

consuming part of a metaheuristic is the fitness function

evaluation phase[20]. Therefore, the number of fitness

function evaluations is usually used as a performance

criterion in metaheuristic algorithms. Considering the fitness

function evaluation metric, the lower computational

complexity of PS, SA, and VS is because of their single-

solution based approach, where fewer function evaluations

are required. PSO2011, ABC and EGA algorithms are

population-based approaches and their higher computational

complexity is meaningful. In Table 4, based on results

provided in Table 1, the accuracy of algorithms is

represented by a fraction of times the algorithm successfully

reached the global best point for benchmark functions where

formulation can be written as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑓𝑜𝑢𝑛𝑑 𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
 (3)

Using the formula (3), fractions for algorithms are as

SA(
17

33
), PS(

21

33
), VS(

26

33
), PSO2011(

27

33
), ABC(

22

33
), EGA(

32

33
).

As can be understood from Table 4, the proposed EGA

algorithm noticeably has the highest accuracy of 97% among

the other algorithms in cost of higher computational

complexity, while the second-best algorithm is PSO2011

with an accuracy of 82% which has considerable difference

compared with EGA.

IV. CONCLUSIONS

This paper introduced the EGA that utilizes two new

operators introduced in this paper, namely the NLS and

Two-Math, which is and may be used for other bound-

constraint numerical function optimization problems. The

NLS operator utilizes a CV of length N that helps to rapidly

find the best possible state and accurate optimum point for

the existing individuals and thus effectively guides the

overall search process toward the global optimum point. The

NLS operator is quite simple and does not require any

additional parameters and has rapid convergence behavior.

Furthermore, the Two-Math crossover operator is used to

effectively explore the continuous search space by first

spreading good gens through produced offspring and then

applying the mathematical crossover technique with the

probability of 𝜌𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 , to the same produced offspring.

The EGA algorithm is tested over a large set of 33

benchmark functions that comprise unimodal, multimodal,

separable and non-separable problems of different

dimensions. The results are compared to both single-

solution based metaheuristics (SA, PS and VS) and

population-based metaheuristics (PSO2011, ABC and GA);

the results revealed that besides its simplicity, the proposed

EGA algorithm is also highly competitive when compared

to the performance of the other algorithms. The proposed

algorithm is quite simple and uses fixed values for crossover

rate and CV parameters as represented in algorithm settings.

Accuracy of the proposed EGA algorithm makes it the right

candidate for the solution of real-life optimization problems.

In future studies, the proposed EGA algorithm will be

improved to handle constraint optimization problems. The

Table 4

Comparing the advantages and disadvantages of algorithms used in the

current work.
N= Number of iterations, P= Population size, CS: Chromosome Size,

CVL= Calibration Vector Length

SB= Single Solution-Based, PB= Population-Based

 SA PS VS
PSO20

11
ABC EGA

Accurac

y
53% 64% 79% 82% 67% 97%

Computa

tional

Complex
ity

O(N) O(N) O(N) O(N*P) O(N*P) O(N*CS*CVL)

Computa

tional

approach

SB SB SB PB PB PB

Journal of Soft Computing and Information Technology (JSCIT) ………………………...…Vol. 9, No. 1, Spring 2020

35

EGA algorithm will also be applied to some real-life

optimizations including engineering optimization problems.

V. REFERENCES

[1] N. Razmjooy, V. V. Estrela, H. J. Loschi, and W. Fanfan, "A

comprehensive survey of new meta-heuristic algorithms,"
Recent Advances in Hybrid Metaheuristics for Data Clustering,

Wiley Publishing, 2019.

[2] J. Silberholz, B. Golden, S. Gupta, and X. Wang,
"Computational Comparison of Metaheuristics," in Handbook

of Metaheuristics, Springer, 2019, pp. 581-604.

[3] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization
by simulated annealing," Science, vol. 220, no. 4598, pp. 671-

680, 1983.

[4] W. Zhang, A. Maleki, M. A. Rosen, and J. Liu, "Optimization
with a simulated annealing algorithm of a hybrid system for

renewable energy including battery and hydrogen storage,"

Energy, vol. 163, pp. 191-207, 2018.

[5] R. Hooke and T. A. Jeeves, ''Direct Search Solution of

Numerical and Statistical Problems," Journal of the ACM

(JACM), vol. 8, pp. 212-229, 1961.
[6] L. Rastrigin, "The convergence of the random search method in

the extremal control of a many parameter system," Automaton

& Remote Control, vol. 24, pp. 1337-1342, 1963.
[7] M. M. Motevali, A. M. Shanghooshabad, R. Z. Aram, and H.

Keshavarz, "WHO: A New Evolutionary Algorithm Bio-
Inspired by Wildebeests with a Case Study on Bank Customer

Segmentation," International Journal of Pattern Recognition and

Artificial Intelligence, vol. 33, p. 1959017, 2019.
[8] S. Harifi, M. Khalilian, J. Mohammadzadeh, and S.

Ebrahimnejad, "Emperor Penguins Colony: a new metaheuristic

algorithm for optimization," Evolutionary Intelligence, vol. 12,
pp. 211-226, 2019.

[9] P. Pijarski and P. Kacejko, "A new metaheuristic optimization

method: the algorithm of the innovative gunner (AIG)," Journal
of Engineering Optimization, vol. 51, no. 12, pp. 1-20, 2019.

[10] S. Mirjalili, "Genetic algorithm," in Evolutionary Algorithms

and Neural Networks Theory and Applications, ed: Springer,
2019, pp. 43-55.

[11] S. D. Mohanty, T. Anderson, M. Birattari, M. Dorigo, S. Boixo,

T. F. Rønnow, et al., "Standard particle swarm optimisation
2011 at CEC-2013: A baseline for future PSO improvements,"

in Swarm Intelligence Methods for Statistical Regression. vol.

1, ed: IEEE Wiley, 2019, pp. xi-xiii.
[12] D. Karaboga and B. Basturk, "Artificial bee colony (ABC)

optimization algorithm for solving constrained optimization

problems," in International fuzzy systems association world
congress, 2007, pp. 789-798.

[13] B. Doğan and T. Ölmez, "A new metaheuristic for numerical

function optimization: Vortex Search algorithm," Information
Sciences, vol. 293, pp. 125-145, 2015.

[14] F. Herrera, M. Lozano, and J. L. Verdegay, "Tackling real-

coded genetic algorithms: Operators and tools for behavioural
analysis," Artificial intelligence review, vol. 12, pp. 265-319,

1998.

[15] D. E. Goldberg and K. Deb, "A comparative analysis of
selection schemes used in genetic algorithms," in Foundations

of genetic algorithms. vol. 1, ed: Elsevier, 1991, pp. 69-93.

[16] J. Zhong, X. Hu, J. Zhang, and M. Gu, "Comparison of
performance between different selection strategies on simple

genetic algorithms," in International Conference on

Computational Intelligence for Modelling, Control and
Automation and International Conference on Intelligent Agents,

Web Technologies and Internet Commerce, pp. 1115-1121,

2005.
[17] T. Bäck, D. B. Fogel, and Z. Michalewicz, Evolutionary

computation 1: Basic algorithms and operators: CRC press,

2018.
[18] D. Karaboga and B. Akay, "A comparative study of artificial bee

colony algorithm," Applied mathematics and computation, vol.

214, pp. 108-132, 2009.
[19] P. Civicioglu, "Backtracking search optimization algorithm for

numerical optimization problems," Applied Mathematics and

Computation, vol. 219, pp. 8121-8144, 2013.

[20] A. Cano, A. Zafra, and S. Ventura, "Speeding up the evaluation

phase of GP classification algorithms on GPUs," Soft

Computing, vol. 16, pp. 187-202, 2012.

 وری اطلاعات امجله علمی پژوهشی رایانش نرم و فن

 صنعتی نوشیروانی بابلدانشگاه

 jscit.nit.ac.ir صفحه مجله:

 35-28، صفحه 1399 بهار، 1، شماره 9جلد

 24/11/1398 :رشیپذ ،11/11/1398 :یبازنگر ،10/09/1397 :افتیدر

 برای بهینه سازی توابع عددی یافتهیک الگوریتم ژنتیک بهبود ارائه

 2*اسدالله شاه بهرامی ، 1کیومرث قاضی پور

 .گروه مهندسی کامپیوتر، دانشکده فنی و مهندسی دانشگاه گیلان، رشت، ایران -1

 .دانشگاه گیلان، رشت، ایرانو مهندسی گروه مهندسی کامپیوتر، دانشکده فنی -2*
1ghazipour.k@gmail.com, 2*shahbahrami@guilan.ac.ir

 ، گروه مهندسی کامپیوتر.یمهندسفنی و دانشکده رشت، دانشگاه گیلان، ، اسدالله شاه بهرامینشانی نویسنده مسئول: *

آورد. مسائل به بهترین وجه ممکن کارآمدی در می ،فرآیندی است که مسائل را تا آنجائیکه امکان داشته باشدسازی چکیده: بهینه

های گیرد. رشد استفاده از الگوریتمای مختلفی از قبیل اقتصاد، علوم، صنایع و مهندسی مورد استفاده قرار میهسازی در زمینهبهینه

هستند. نیز هافناوری خواهان استفاده از این الگوریتم مختلف دیگر از جملههای گران در زمینهسازی بحدی رسیده است که پژوهشبهینه

اند ولی بدست آوردن نتایج با کیفیت و دقت بالا هنوز از چالشهای پیش رو های زیادی معرفی شدهالگوریتم ،سازی مسائلبرای بهینه

. در این مقاله برای بهبود کارایی الگوریتم ژنتیک هستند شناخته شده ،ی سختسازمسائل بهینه درفراابتکاری های الگوریتم. است

(GA) سازی توابع عددی دو عملگر جدید بنامهای بعنوان یک الگوریتم فراابتکاری، برای بدست آوردن نتایجی با کیفیت بالاتر در بهینه

رقمی الهام گرفته شده Nاز الگوی قفل ترکیبی NLSعملگر .تلاقی دو نقطه حسابی ارائه شده استو (NLS)رقمی Nجستجوی قفل

دو نقطه و تلاقی تکنیکهایبا دومدهد و عملگر الگوریتم ژنتیک را با تنظیم بهترین راه حل جاری بهبود می که رفتار استثماری است

تابع ریاضی 33روی (EGA)الگوریتم ژنتیک بهبود داده شده می کند. و پردازش ترکیب ،بهترکلی جستجوی هدایتدر جهت حسابی

سازی نتایج بدست آمده با برخی از الگوریتم های مبتنی بر جمعیت مانند بهینه .زن مورد تست و ارزیابی قرار گرفتع محکببعنوان توا

و (SA)سازی تبرید الگوریتم شبیهنند ما یک جوابو الگوریتم های مبتنی بر (ABC)کلونی زنبور عسل ازدحام ذرات و الگوریتم

نسبت به EGAالگوریتم عملکرد . نتایج نشان داد که کارایی مورد مقایسه قرار گرفت (VA) یو جستجوی گرداب (PS) جستجوی الگو

تقریبا برای تمامی بهترین نقاط بهینه سراسری را EGAنتایج نشان داد که الگوریتم بهتر است. بعلاوه مورد مقایسههای بقیه الگوریتم

 پیدا می کند. موجودگر لبا استفاده از مقادیر ثابت برای دو عملگر از سه عم تابع مورد تست 33

 سازی سراسری.توابع، بهینهسازی الگوریتم ژنتیک، بهینههای فراابتکاری، الگوریتم های کلیدی:واژه

http://www.jscit.nit.ac.ir/

