Journal of Soft Computing and Information Technology (JSCIT)

S
Babol Noshirvani University of Technology, Babol, Iran ‘
Journal Homepage: www.jscit.nit.ac.ir
Volume 9, Number 1, Spring 2020, pp. 28-35 s
Received: 12/01/2018; Revised: 01/31/2020; Accepted: 02/13/2020 JSO

Joumal of Soft Computing and Information Technology

EGA: An Enhanced Genetic Algorithm for Numerical
Functions Optimization

Kiumars Ghazipour?, Asadollah Shahbahrami?*
1-Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.
2-Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.
L ghazipour.k@gmail.com,  2*shahbahrami@guilan.ac.ir

Corresponding author’s address: Asadollah Shahbahrami, Department of Computer Engineering, Faculty of Engineering,
University of Guilan, Rasht, Iran.

Abstract- Optimization is the process of making something as good or effective as possible. Optimization
problems are used over many fields such as economics, science, industry and engineering. The growing use of
optimization makes it essential for researchers in every branch of science and technology. To solve optimization
problems many algorithms have been introduced, while achieving a higher quality of results in terms of accuracy
and robustness is still an issue. Metaheuristics are widely recognized as efficient approaches for many hard
optimization problems. In this study, to achieve a higher quality of results in numerical functions optimization,
two new operators named N-digit lock search (NLS) and Two-Math crossover are introduced to enhance the
genetic algorithm (GA) as a widely used metaheuristic. The NLS operator is inspired by the N-digit combination
lock pattern and enhances the exploitative behavior of the GA by calibrating the current best solution and the
relatively new Two-Math crossover operator combines both two-point and arithmetic crossover techniques to
guide the overall search process better. The proposed enhanced genetic algorithm (EGA) is tested over 33
benchmark mathematical functions and the results are compared to some population-based, particle swarm
optimization (PSO2011) and artificial bee colony (ABC) algorithms, and single-solution based, simulated
annealing (SA), pattern search (PS), and vortex search (VS). A problem-based test is performed to compare the
performance of the algorithms, which results shows the proposed EGA outperforms all other algorithms, SA, PS,
VS, PS02011 and ABC. In addition, it surprisingly finds the global best points for almost all 33 test functions
with a constant value for 2 out of 3 EGA operators.

Keywords- Metaheuristics, Genetic algorithm, Function optimization, Global optimization.

pattern search (PS) [5], and random search (RS) [6]. In
I. INTRODUCTION population-based metaheuristics, first, a number of solutions
are created and then updated continuously until the
termination  condition is met.  Population-based
metaheuristics are generally studied under two major
groups: evolutionary algorithms and swarm-based
algorithms. Fig. 1 depicts a visual categorization of these
metaheuristics.

Hard optimization problems are problems that cannot be
solved to optimality, or any guaranteed bound, by any exact,
deterministic method within a ‘‘reasonable’” time limit.
These problems can be divided into several categories. To
find acceptable solutions for these types of problems, we can
use metaheuristics. A metaheuristic is an algorithm designed
to solve approximately a wide range of hard optimization  Although many metaheuristic algorithms have been
problems without having to adapt to each problem deeply introduced so far, works to provide a metaheuristic
[1]. algorithm to get higher accuracy of results for the problems
in hand continues in the research field [7-9], and achieving

Metaheuristics are mainly classified and studied under two . o -
higher accuracy of results is still an issue.

major categories, single-solution based and population-
based [1, 2]. Single-solution based metaheuristics, are based ~ Among other metaheuristics, a genetic algorithm (GA) [10]
on a single solution and include local search-based
metaheuristics such as simulated annealing (SA)[3, 4],
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Simulated Annealing, Tabu Search, Pattern Search, Random Search, lterated
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Fig. 1. Visual categorization of metaheuristics mentioned in this paper.

is arguably the most well-known and mostly used
metaheuristic. The power of GAs comes from the fact that
the technique is robust and can deal successfully with a wide
range of problem areas including those which are difficult
for other methods to solve. However, in some hard to
optimize problems, GA usually finds near-global optimum
but after some generations cannot offer further improvement
even if a large number of generations are produced. Finally,
at the end of the execution of GA, there is no guaranty to
find the global best or at least the best possible solution using
the currently found ones.

In this study we propose an enhanced genetic algorithm
(EGA) which utilizes two new operators, namely, N-digit
lock search (NLS), and a relatively new hybrid crossover
operator named Two-Math crossover to solve bound-
constrained global optimization problems. Here, the
proposed NLS and Two-Math operators are applied to the
standard continuous genetic algorithm as operators and
results show that the proposed EGA considerably improves
the performance of the search process and finds almost all
the global best points for test functions. The proposed EGA
is tested over the 33 well-known benchmark functions, and
the results were compared to SA, PS, PS02011[11],
ABC[12], and VS[13] algorithms, where EGA was found to
outperform all these algorithms.

The remaining part of the paper is organized as
follows. Section 2 demonstrates the proposed EGA
algorithm. Section 3 covers the experimental results
and discussion. Finally, section 4 concludes the work.

Il. THE PROPOSED EGA

The proposed EGA is comprised of GA and two new
operators introduced in the present work, namely the NLS
and the Two-Math crossover. After initializing the
population, using the roulette wheel selection method, the
fittest parents will be selected to undergo the mating process.
The mating process takes place by applying Two-Math
crossover to form two high-quality offspring. The Two-
Math crossover consists of two phases: first, by spreading
good gens using two-point crossover, and second, by
applying the arithmetic crossover with the probability of
P arithmetic t0 the same offspring to adjust them to diverse the
population and find new promising solutions in the
continuous search space. Afterward, some offspring will
undergo the mutation process with the probability of pm.
Then, the NLS operator works on the best solution found so
far “Shest” and tries to tune it to reach the best fitness
available for Sbest. Finally, the tuned Sbest is inserted E
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time into the new population to fulfill elitism. E is a
parameter into adjusting elitism which could be set from 1
to N where N is the population size. We had determined the
value of E by parameter tuning to find the best degree of
elitism that works best by EGA. Our elitism strategy takes
place by inserting Sbest E times into the population, instead
of selecting and inserting E best individuals. Using high
values for E leads the population to stuck in a local optimum
and/or behave randomly. Assuming E=1 is a typical elitism
strategy that is commonly used by elitism-based GAs. We
found E=3 a compromise point where both faster
convergence and local optima avoidance are obtained. In the
middle stages of EGA, thanks to the roulette wheel selection
method, the population will be full of the fittest solutions
found so far, which are likely very similar to the Sbest and
so, faster convergence to either local or global optimum
point is achieved. Here if Sbest is global optima, it is done,
and if the Sbest is local optima, then because of population-
based approach and variation operators (mostly the
mutation), new variants of Sbest will be generated. Resulted
in Sbest variations (after applying the NLS operator) are
either better or worse than Shest itself. Here, by inserting
better Sbest variations into the population and repeating the
evolution process, the total solutions will be guided towards
the global optimum point. Fig. 2. describes the proposed
EGA.

A. Methodology
1) Initial population and chromosome representation

Given an initial population of N chromosomes, the initial
values for each gen is generated by uniformly distributed
random real values as below:

x;(k) < UlXmin(K) .. Xmax(R)] . (1)

forie[l..Nlandke[l..n].

Where x is a vector of individuals of size N; U is the uniform
random real number generator, and X,,;, and X,,q, are
lower and upper bounds for generated numbers. In the
present study, the real coded representation method is
adopted, in which each continuous variable holds a real
number [14].

2) Elitist strategy and selection method
In the proposed EGA, a new elitism strategy named
elitism of degree E is used, where E is the number of times
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Parents € {randomly generated population}

While (maximum number of iterations is not reached)
Calculate the fitness of each parent in the population
Elite € Best parent
Children € 0
While | Children | < | Parents |

Children € Children U {c;, c,}
Loop
Randomly mutate some of the children
Apply NLS to the Elite individual

Parents € Best N Parents
Next generation

Use fitnesses to probabilistically select a pair of parents for mating using roulette wheel selection method
Mate the parents to create children c; and ¢, using Two-Math crossover

Parents € Children U Elite E Times /insert elite individual (Sbest) E times into the population

Fig. 2. The proposed EGA pseudo code

the elite individual “Sbest” is inserted into the new
population in each iteration. Inserting the E elite individuals
into the new population takes place by replacing them with
E random individuals which already exist in the population.
For the selection process we adopted the roulette wheel
method [15, 16] since the roulette wheel can ensure a faster
convergence to either local or global optimum point.

3) Two-Math crossover method

In the present work, a relatively new hybrid crossover
named Two-Math is introduced by combining the two-point
and arithmetic crossover methods. These methods are
utilized as a single crossover operator. In this Two-Math
crossover as it can be understood from the name, we first
apply two-point crossover to spread good gens through
chromosomes and produce two offspring by the mating
process. Then arithmetic crossover which is essentially
designed to use in continuous GA, is applied to the same two
produced offspring with the probability of pgrithmetics
where we found pg ithmetic = 0-01 by parameter tuning.
Fig. 3. describes the Two-Math crossover method.

/Do two-point crossover
Mate the parents pl, p2 to create children cl and c2 using
two-point crossover
/Do arithmetic crossover with probability of parithmetic
Parithmetic < 0.01
if (RandomDoubleBetween(0, 1) < parithmetic) {
o € RandomDoubleBetween(0, 1);
j € random crossover point //Set arithmetic crossover point
for (; j < GenSize; j++){
cl.Gen[j] € (pl.Gen [j] + p2.Gen [j]) * o;
c2. Gen[j] € (pl.Gen [j] + p2.Gen [j]) * (1 - a);}
18

Fig. 3. Two-Math crossover pseudo code

4) Mutation method
In the present work we used a uniform mutation [17].
The formulation can be written as:
r « U[0..1]

x, (k) x;(k). ifr=p
forie[l..N]land k € [1..n].

Ulxmin (K). Xmax (). if r<p @)
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5) Stopping criteria of EGA

The EGA is terminated after a 500000 prespecified
maximum number of generations. This humber of iterations
is also applied in other algorithms which are used for
performance comparison.

6) The NLS operator

The NLS operator is inspired by the N-digit combinational
lock pattern and is used to improve the exploitative behavior
of GA. Fig. 4. demonstrates a typical 10-digit combinational
lock. In decimal representation, every digit of any number
consists of digits ranging from 0 to 9. Considering the
optimization of the continuous function, the same rule
applies to the real numbers which are used as the value of
the optimization functions variables. Like a combinational
lock, in NLS the goal is to find the best digits for an N-digit
solution of a numerical optimization function. In NLS,
instead of the brute force search that happens while guessing
the combinational lock password, a priority numerical
search is used. It begins from calibrating the most significant
digit of Sbest to less significant one using a vector of fixed
values of length N that we call it the calibration vector (CV).
The search process keeps calibrating Shest in a way that
fitness value for Sbhest continually improves, until no
improvement is available to Sbest. Fig. 5. Depicts a sample
CV of length 10. The CV initialization could be varied
according to the type of target problems and the amount of
precision required. The NLS operator starts with Sbhest, then
attempts to find a better solution by making either an
incremental or decremental change to the Shest. Changes are
made by means of adding or subtracting the whole CV
values with Shest starting from CV[0] to CV[N] in which
better fitness is gained. If the change produced a better
solution, another incremental or decremental change is made
to the Shest, and so on, until no further improvements can be
achieved. As a result, rapid convergence to the best possible

Fig. 4. A typical 10-digit combinational lock pad
improvement available for Sbest is achieved. Fig. 6. shows
the NLS pseudo code.

No. 1 2 3 4.5 6 7 8 9 10

Value 4.0 2.0 1.0 0.1 0.01 0.001 0.00010.000010.0000010.0000001
Fig. 5. Sample calibration vector of length 10
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Inputs: Initialized Calibration Vector “CV” (i.e. Fig. 5.)
Best solution found so far “Spet”
Chromosome Size “CS”

i=0;

S= Shesl

Repeat

Set direction (either to “+”

Repeat

e

or -

i++;
While i< CS
Spest = S
Output: Spest as the best solution achieved

) in which improvement is available to the S

Starting from CV[0] to CV[N], apply whole CV to S(i) either by adding or subtracting depending on the current direction
While (improvement is available for S(i)) //so fitness value for whole S will be improved

Fig. 6. The NLS operator pseudo code
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Fig. 7. Running the EGA for max of 100 iterations over 2-domensional Booth function
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Fig. 8. Running the EGA for max of 100 iterations over 30-domensional SumSquares function using CV length ranging from 0

to 30, which 0 means to not apply NLS operator.
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Fig. 9. Running the EGA for max of 100 iterations over 30-domensional DixonPrice function using CV length ranging from 0 to

30, which 0 meansto  not apply NLS operator.

Figs 7, 8, and 9 display fitness values for the 2-dimensional
booth, and 30-dimensional SumSquares and DixonPrice test
functions after 100 iterations respectively. Precision values
represent the CV length (ranging from 0 to 30) utilized by
the NLS operator. Since the precision value of “0”, means
running the simple GA without using the NLS operator,
dramatic improvement can be seen using the CV length of
only “1” over the max of 100 iterations. Furthermore, using
the same number of iterations, results from applying CV of
length 30 is outstanding, so that Booth, SumSquares and
DixonPrice fitness values range from (0.015434858 to

31

3.15544E-30), (29516.6809 to 0.0) and (122522.3830 to
8.77608E-30) respectively.
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Table 1

Statistical results of 30 runs obtained by SA, PS, PSO2011, ABC, VS and EGA algorithms (values < 1076 are considered as 0). Where best values

found by algorithms are global optima, they marked with “*”.

C: Characteristics, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable

Test bed C Min. SA PS PS02011 ABC VS EGA
Stepint us 0 Mean 1.866666667 0 0 0 0 0
StdDev 1.136641554 0 0 0 0 0
Best 0* 0* 0* 0* 0* 0*
Step us 0 Mean 0 0 0.066666667 0 0.2 0
StdDev 0 0 0.253708132 0 0.406838102 0
Best 0* 0* 0* 0* 0* 0*
Sphere us 0 Mean 0 0 0 2.75098E-16 0 0
StdDev 0 0 0 0 0 0
Best 0* 0* 0* 2.23487E-16 0* 0*
SumSquares us 0 Mean 0 0 0 2.75098E-16 0 0
StdDev 0 0 0 0 0 0
Best 0* 0* 0* 1.85594E-16 0* 0*
Quartic us 0 Mean 0.4028326 0.049370406 1.64098E-05 0.013732963 0.000145026 7.38312E-05
StdDev 0.301544881 0.046578461 5.56581E-06 0.002379448 7.30549E-05 1.069E-04
Best 0.001414536 1.61333E-05 7.13993E-06 0.008413424 5.54996E-05 5.81378E-06
Beale UN 0 Mean 0.000430475 0 0 6.37598E-16 0 0
StdDev 0.000943865 0 0 3.58687E-16 0 0
Best 2.51078E-08 0* 0* 0* 0* 0*
Easom UN -1 Mean -0.028827505 -8.11022E-05 -1 -1 -1 -1
StdDev 0.157894721 0 0 0 0 0
Best -0.864825008 -8.11022E-05 -1* -1* -1* -1*
Matyas UN 0 Mean 0 0 0 0 0 0
StdDev 0 0 0 0 0 0
Best 0* 0* 0* 0* 0* 0*
Colville UN 0 Mean 1.83377047 0.002199995 0 0.00576453 0 0
StdDev 2.351638954 0 0 0.003966867 0 0
Best 0.000971812 0.002199995 0* 0.000383073 0* 0*
Tridé UN -50 Mean -49.84789091 -50 -50 -50 -50 -50
StdDev 0.150775917 0 3.61345E-14 4.94748E-14 2.96215E-14 1.67649E-12
Best -49.98701123 -50* -50* -50* -50* -50*
Trid10 UN -210 Mean 209.5023223 -209.9954224 -210 -210 -210 -210
StdDev 0.230476381 0 2.30778E-13 9.62204E-12 6.19774E-13 5.70687E-11
Best -209.8801988 -209.9954224 -210* -210* -210* -210*
Zakharov UN 0 Mean 0 0 0 7.56674E-14 0 0
StdDev 0 0 0 3.76382E-14 0 0
Best 0* 0* 0* 2.31887E-14 0* 0*
Powell UN 0 Mean 0 0 2.04664E-07 9.09913E-05 1.43967E-05 0
StdDev 0 0 1.21051E-08 1.42475E-05 2.27742E-06 0
Best 0* 0* 1.72679E-07 .23427E-05 5.71959E-06 0*
Schwefel 2.22 UN 0 Mean 0 0 1.094284383 8.51365E-16 0 0
StdDev 0 0 0.870781136 0 0 0
Best 0* 0* 0.107097937 8.51365E-16 0* 0*
Schwefel 1.2 UN 0 Mean 0 0 0 0.000760232 0 0
StdDev 0 0 0 0.000440926 0 0
Best 0* 0* 0* 0.00027179 0* 0*
Rosenbrock UN 0 Mean 0.224618742 9.84185348 0.930212233 0.003535257 0.367860114 0.930212233
StdDev 0.097171414 0 1.714978077 0.003314818 1.130879848 1.686152863
Best 0.082077849 9.84185348 0* 7.08757E-05 9.42587E-05 0*
Dixon-Price UN 0 Mean 0.990721802 0. 7 0. 7 1.91607E-15 0.666666667 0
StdDev 0.029412712 0 4.38309E-16 2.55403E-16 7.68909E-16 0
Best 0.871516993 0.666666667 0.666666667 1.1447E-15 0.666666667 0*
Foxholes MS  0.998003838 Mean 5.5682975 0.998003838 34.26621987 0.998003933 0.998003838 0.998003838
StdDev 4.367922182 4.51681E-16 126.6004794 4.33771E-07 0 0
Best 0.998003838* 0.998003838* 0.998003838* 0.998003838* 0.998003838* 0.998003838*
Branin MS  0.397887358 Mean 0.398269177 0.397887358 0.397887358 0.397887358 0.397887358 0.397887358
StdDev 0.001624387 0 0 0 0 5.99931E-16
Best 0.397887361 0.397887358* 0.397887358* 0.397887358* 0.397887358* 0.397887358*
Bohachevskyl MS 0 Mean 0 0 0 0 0 0
StdDev 0 0 0 0 0 0
Best 0* 0* 0* 0* 0* 0*
Booth MsS 0 Mean 5.28496E-05 0 0 0 0 0
StdDev 7.35674E-05 0 0 0 0 0
Best 7.35674E-05 0* 0* 0* 0* 0*
Rastrigin MsS 0 Mean 0 0 26.11016129 0 57.60799224 0
StdDev 0 0 5.686650032 0 13.94980276 0
Best 0* 0* 16.91429893 0* 13.94980276 0*
Schwefel MS  -12569.48662 Mean -1891.275468 -3686.285205 -8316.185447 -12569.48662 -11283.05416 -12569.48662
StdDev 137.3913021 2.77513E-12 463.9606712 1.85009E-12 352.1869262 1.81899E-12
Best -2188.304761 -3686.285205 -9466.201047 -12569.48662* -11799.62928 -12569.48662*
Michalewicz2 MS  -1.80130341 Mean 1.792778285 -1.80130341 -1.80130341 -1.80130341 -1.80130341 -1.80130341
StdDev 0.043874926 1.35504E-15 9.03362E-16 9.03362E-16 9.03362E-16 6.66134E-16
Best -1.801296643 -1.80130341* -1.80130341* -1.80130341* -1.80130341* -1.80130341*
Michalewicz5 MS  -4.687658179 Mean -3.670604734 -4.495893207 -4.67700874 -4.687658179 -4.670953055 -4.681228926
StdDev 0.496257736 2.71009E-15 0.036487971 2.60778E-15 0.020809276 0.034622588
Best -4.684023442 -4.495893207 -4.687658179* -4.687658179* -4.687658179* -4.687658179*
Michalewicz10 MS  -9.660151716 Mean -6.060491565 -8.461507306 -9.204154798 -9.660151716 -8.793361668 -9.660151716
StdDev 0.504024688 5.42017E-15 0.298287637 0 0.382153549 4.91851E-15
Best -6.880235805 -8.461507306 -9.660151716* -9.660151716* -9.410563187 -9.660151716*
Schaffer MN 0 Mean 0 0 0 0 0 0
StdDev 0 0 0 0 0 0
Best 0* 0* 0* 0* 0* 0*
Six Hump MN  -1.031628453 Mean -1.031621639 -1.031628453 -1.031628453 -1.031628453 -1.031628453 -1.031628453
Camel Back StdDev 2.1595E-05 4.51681E-16 6.71219E-16 6.77522E-16 6.77522E-16 0
Best -1.031628448 -1.031628453* -1.031628453* -1.031628453* -1.031628453* -1.031628453*
Bohachevsky2 MN 0 Mean 0 0 0 0 0 0
StdDev 0 0 0 0 0 0
Best 0* 0* 0* 0* 0* 0*
Bohachevsky3 MN 0 Mean 0 0 0 0 0 0
StdDev 0 0 0 0 0 0
Best 0* 0* 0* 0* 0* 0*
Shubert MN  -186.7309088 Mean -186.7309087 -123.5767709 -186.7309088 -186.7309088 -186.7309088 -186.7309088
StdDev 5.76173E-07 4.49449E-13 1.18015E-14 1.18015E-14 2.84217E-14
Best -186.7309088* -123.5767709 -186.7309088* -186.7309088* -186.7309088* -186.7309088*
GoldStein- MN 3 Mean 3.000000254 30 3 3 3 3
Price StdDev 4.36073E-07 1.08403E-14 1.22871E-15 1.7916E-15 1.44961E-15 2.61436E-14
Best 3* 30 3* 3* 3* 3*
Kowalik MN  0.000307486 Mean 0.002635099 0.00031966 0.000307486 0.000319345 0.000307486 0.000307486
StdDev 0.001644496 0 0 5.4385E-06 0 0
Best 0.000780214 0.00031966 0.000307486* 0.00030894 0.000307486* 0.000307486*
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I1l. EXPERIMENTAL RESULTS

The proposed EGA algorithm is tested over 33 benchmark
functions, that are obtained from the study performed by
Dogan and Olmez [13]. They compared the performance of
the VS algorithm to the SA, PS, PSO2011 and ABC
algorithms. We have compared the performance of the
proposed approach to the mentioned algorithms using the
same benchmark. SA and PS are two well-known single-
solution based algorithms, and PSO2011 is an extension of
the standard PSO algorithm.

For evaluation, the overall performances of the algorithms
are studied for a constant number of iterations. After a
certain number of iterations, the algorithms are evaluated
according to the mean and the best fitness values found for
each benchmark function.

Table 2

Problem-based comparison of the proposed EGA algorithm.

Problem |[EGAvs. EGAvs. [EGAVs. EGAvs. |[EGA\vs.
type SA PS PSO2011 IABC VS

uUs 2/3/0 1/4/0 1/3/1 3/2/0 2/3/0
UN 7/5/0 5/7/0 8/4/0 8/4/0 3/9/0
MS 7/2/0 3/6/0 5/4/0 0/9/0 4/5/0
MN 4/3/0 3/4/0 0/7/0 1/6/0 1/6/0
Total (+/=/-)[20/13/0  [12/21/0 |14/18/1 12/21/0 10/23/0

A. Algorithm settings

Population-based metaheuristics (ABC, PSO2011, EGA)
are selected to have a population size of 50. For the proposed
EGA algorithm, crossover and CV parameters are set to the
fixed value of 0.9 and 14 respectively, and mutation rates are
set as (Kowalik: 1.0), (Quartic-Easom-Schwefel-
Michalewicz5-Michalewicz10-Bohachevsky2-
Bohachevsky3-Shubert: 0.8), (Rastrigin- Schaffer: 0.1), (the
rest of functions: 0.5). The number of neighborhood
solutions of the VS algorithm is set to 50. The SA algorithm
always performs with a single solution, and the PS algorithm
creates its own neighbor vectors (pattern). The acceleration
coefficients (c1 and c2) of the PSO2011 algorithm are both
set to 1.8, and the inertia coefficient is set to 0.6, as in [18].
The limit value for the ABC algorithm is determined as limit
= SN/ D, where SN represents the number of food sources
and D represents the dimension. The maximum number of
iterations is selected as 500,000 to evaluate the overall
performances of the algorithms.

B. Overall performances of the algorithms

The proposed EGA algorithm is compared to the SA, PS,
PS02011, ABC and VS algorithms, using the 33 benchmark
functions given in Table 1. For each algorithm, 30 different
runs are performed, and the mean and the best fitness values
are recorded. The maximum number of iterations is selected
to be 500,000, as mentioned previously. For the SA and PS
algorithms, the MATLAB® Global Optimization Toolbox
is used, and the other algorithms are also coded in
MATLAB®, except EGA which is coded in C#.Net. For
each algorithm, all of the functions are run in parallel using
an Intel® Corei5 CPU 8 GB RAM workstation.
Experimental results are presented in Table 1.

Most of the modern software development tools use an
arithmetic precision of 102 in the double-precision mode.
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An arithmetic precision value that is higher than necessary,
makes it difficult to compare the local search abilities of the
algorithms [19]. For this purpose, during the pair-wise
comparison, resulting values below 106 are considered as
0. From Table 1, it can be shown that the EGA algorithm
outperforms the SA, PS, PSO2011, ABC and VS algorithms.
The SA algorithm performs a pure random search over the
search space for which obtained results become meaningful.
The PS algorithm is also a single-solution based algorithm
that performs poorly compared to the EGA algorithm. The
ABC algorithm is a powerful swarm-based algorithm that is
used successfully for the solution of many types of
optimization problems. For a number of functions, the ABC
algorithm fails to exceed the 1071 limit. Once the algorithm
converges to a near-optimal point, the excellent local search
ability of the EGA algorithm can be seen, which helps the
algorithm to further improve the solution.

In Table 2, a problem-based (US, UN, MS and MN)
comparison of the algorithms is also provided. Each cell in
the Table 2 shows the total count of the three cases (+ =
Win /= => Equal /- = Loss). From Table 2, it can be shown
that, for MN (multimodal non-separable) functions, the
proposed EGA algorithm performs better than the other
algorithms. For UN (unimodal non-separable) functions the
proposed EGA algorithm again performs better than the
others. Thus, from these results it can be inferred that the
EGA algorithm performs better than other algorithms. For
MS (multimodal separable) functions the proposed EGA
algorithm again outperforms the other algorithms except for
the ABC algorithm. Finally, for US (unimodal separable)
functions the proposed EGA algorithm performs completely
better than other algorithms while being competitive with
the PSO2011 algorithm.

C. Analyzing the effect of proposed operators

Table 3

Comparing the effect of each proposed operator independently. For an
accurate comparison, exact values are displayed.

GA1: GA with two-point crossover.

GA2: GA with proposed Two-Math crossover.

GA3: GA with two-point crossover and proposed NLS operator.
EGA: Proposed algorithm.

Testbed Min. GAl GA2 GA3 EGA
Beale 0 Mean 1.25927E- 1.00663E- 5.15487E- 4.79682E-
StdDev 07 07 25 25
Best 8.28221E- 5.27296E- 1.53119E- 1.37906E-
08 08 25 25
1.52144E- 3.08371E- 2.68522E- 2.21837E-
08 08 25 25*
Booth 0 Mean 4.33821E- 2.86155E- 2.97156E- 7.42323E-
StdDev 09 09 26 27
Best 5.51052E- 3.61045E- 2.32237E- 1.91435E-
09 09 26 26
1.96679E- 5.35202E- 5.50625E- 7.88861E-
11 11 27 31*
Colville 0 Mean 1.89115E- 2.13100E- 4.17146E- 3.74920E-
StdDev 01 01 22 22
Best  0.15565469 0.16798380 1.82244E- 1.81417E-
6 9 22 22
1.56804E- 2.30417E- 1.24546E- 8.79868E-
03 04 22 23*
Kowalik  0.000 Mean 0.00059326 0.00048550 0.0003074 0.0003074
30748StdDev 8 4 86 86
6 Best  0.00010383 9.93076E- 6.64809E- 4.91747E-
9 05 17 17
0.00040671 0.00032080 0.0003074 0.0003074
3 9 86 86*
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Rosenbroc 0 Mean 1852863.95 28.7127109 1.4617620 0.9302122

k StdDev 60 19 80 33
Best  811776.243 0.52773504 1.9211317 1.6861528
1 6 49 63
410660.388 2.72733E+08.04386E- 6.27580E-
4 1 22 22*
Table 4
Comparing the advantages and disadvantages of algorithms used in the
current work.
N= Number of iterations, P= Population size, CS: Chromosome Size,
CVL= Calibration Vector Length
SB= Single Solution-Based, PB= Population-Based
PSO20
SA PS Vs 11 ABC EGA
ACC;”aC 53% | 64% | 79% | 82% | 67% 97%
Computa
tional " " o
Complex O(N) | O(N) | O(N) | O(N*P) | O(N*P) | O(N*CS*CVL)
ity
Computa
tional SB SB SB PB PB PB
approach

In Table 3, we analyzed the effect of each operator
introduced in our work independently and compared them
with standard GA and proposed EGA to measure
improvements obtained by each operator. To achieve this,
different versions of GA have run on five test-beds for a
maximum of 500,000 iterations. According to Table 3,
improvements obtained using proposed operators are clear,
and they become clearer, when the hardness of test function
grows higher, like Rosenbrock function. Assuming GA1 as
a base algorithm, GA2 performs better (Kowalik (GAL:
0.000406713 = GA2: 0.000320809), Rosenbrock (GA1:
410660.3884 => GA2: 2.72733E+01)) or at least
competitive (Beale (GA1: 1.52144E-08 = GA2: 3.08371E-
08), Booth (GALl: 1.96679E-11 =» GAZ2: 5.35202E-11),
Colville (GA1: 1.56804E-03 = GAZ2: 2.30417E-04)) with
GA1 which indicates better performance of proposed Two-
Math crossover in comparison with two-point crossover.
GAZ3 is far better than both GA1 & GA2 by holding a large
edge in all test cases (i.e. Colville (GA2: 2.30417E-04 =>
GA3: 1.24546E-22), Rosenbrock (GA2: 2.72733E+01 =
GAZ3: 8.04386E-22)) and thus, the impressive performance
of NLS operator can be seen. Finally, the last column
displays results obtained by the proposed EGA, where both
Two-Math and NLS operators are used. As results show in
Table 3, EGA outperforms other GA versions used in the
experiment. Comparing EGA with GAS3, again the
performance of proposed Two-Math crossover is clear
where slightly better results obtained by EGA (Booth (GA3:
5.50625E-27 =» EGA: 7.88861E-31), Colville (GA3:
1.24546E-22 = EGA: 8.79868E-23)).

D. Summarized comparison of discussed algorithms

Table 4 compares algorithms used in the current work in
terms of accuracy, computational complexity and
computational approach, while they share nearly similar
implementation difficulty. Since metaheuristics are
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stochastic algorithms and meanwhile, the most time-
consuming part of a metaheuristic is the fitness function
evaluation phase[20]. Therefore, the number of fitness
function evaluations is usually used as a performance
criterion in metaheuristic algorithms. Considering the fitness
function evaluation metric, the lower computational
complexity of PS, SA, and VS is because of their single-
solution based approach, where fewer function evaluations
are required. PSO2011, ABC and EGA algorithms are
population-based approaches and their higher computational
complexity is meaningful. In Table 4, based on results
provided in Table 1, the accuracy of algorithms is
represented by a fraction of times the algorithm successfully
reached the global best point for benchmark functions where
formulation can be written as:

total count of times the algorithm found global best

@)

Using the formula (3), fractions for algorithms are as
17 21 26 27 22 32

SA(E), PS(E), VS(E), PSOZOll(;), ABC(;), EGA(;).
As can be understood from Table 4, the proposed EGA
algorithm noticeably has the highest accuracy of 97% among
the other algorithms in cost of higher computational
complexity, while the second-best algorithm is PSO2011
with an accuracy of 82% which has considerable difference
compared with EGA.

accuracy =
y total number of test functions

IV. CONCLUSIONS

This paper introduced the EGA that utilizes two new
operators introduced in this paper, namely the NLS and
Two-Math, which is and may be used for other bound-
constraint numerical function optimization problems. The
NLS operator utilizes a CV of length N that helps to rapidly
find the best possible state and accurate optimum point for
the existing individuals and thus effectively guides the
overall search process toward the global optimum point. The
NLS operator is quite simple and does not require any
additional parameters and has rapid convergence behavior.
Furthermore, the Two-Math crossover operator is used to
effectively explore the continuous search space by first
spreading good gens through produced offspring and then
applying the mathematical crossover technique with the
probability of pg.ithmetic, 10 the same produced offspring.
The EGA algorithm is tested over a large set of 33
benchmark functions that comprise unimodal, multimodal,
separable and non-separable problems of different
dimensions. The results are compared to both single-
solution based metaheuristics (SA, PS and VS) and
population-based metaheuristics (PS02011, ABC and GA);
the results revealed that besides its simplicity, the proposed
EGA algorithm is also highly competitive when compared
to the performance of the other algorithms. The proposed
algorithm is quite simple and uses fixed values for crossover
rate and CV parameters as represented in algorithm settings.
Accuracy of the proposed EGA algorithm makes it the right
candidate for the solution of real-life optimization problems.
In future studies, the proposed EGA algorithm will be
improved to handle constraint optimization problems. The
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EGA algorithm will also be applied to some real-life  [20] A. Cano, A. Zafra, and S. Ventura, "Speeding up the evaluation

Fmioat ; : : : Fmioati phase of GP classification algorithms on GPUs," Soft
optimizations including engineering optimization problems. Computing, vol. 16, pp. 187-202, 2012,
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