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Abstract— Land Surface Emissivity (LSE) is an important 

intrinsic property of materials that is variable through 

physical parameters and it is dependent on the Spectral 

Response Function (SRF) and the effective wavelength of the 

channel. Surface Energy Balance Algorithm for Land 

(SEBAL) is one of the most widely applied models, which is 

comprised of twenty-five sub-models that calculate different 

surface variables such as LSE and LST. This algorithm used 

within 3-14 μm and 8-14 μm spectral domain as a broadband 

and narrowband, respectively. The 8-14 μm spectral domain 

in the Landsat-8 (known as Landsat Data Continuity Mission, 

LDCM) divided to two very narrowband thermal infrared 

bands (TIR) (10.60 - 11.19 µm) and (11.50 - 12.51 µm) spectral 

ranges. This study investigates the effects of SRF and effective 

wavelength of two LDCM TIR bands on SEBAL-based LSE 

estimation method. The effectiveness of the modification 

proposed method, MLSESEBAL, is empirically tested over one 

scene of LDCM data and the obtained LSEs by initial and 

modified methods were compared to the LSE product of the 

ASTER as a reference by image-based and class-based cross-

validation. The results showed that the MLSESEBAL 

demonstrated better performance rather than initial SEBAL 

LSE estimation method in term of RMSE. Indeed, the RMSE 

values of LSE obtained by initial and modification SEBAL are 

1.37% (for b10) and 1.12% (for b 11) which, lead to 1.16 K 

and 1.03 K errors and 0.46% (for b10) and 0.39% (for b 11) 

which lead to 0.39 K and 0.36 K errors in the LST retrieval in 

the first scene, respectively. Similarly, for the second scene, 

the RMSE values are 0.69% (for b10) and 0.65% (for b 11) 

which lead to 0.6 K and 0.58 K errors and 0.46% (for b10) 

and 0.43% (for b 11) which lead to 0.40 K and 0.39 K errors, 

respectively. The achieved LSEs of initial SEBAL and 

modification methods showed that if there is little difference 

in the effective wavelength between broadband and 

narrowband, the LSE estimation is almost identical to the 

non-vegetated area and there is no significant difference, 

while it is non-negligible in the vegetated area. Moreover, the 

MLSESEBAL compared to three common LSE estimation 

methods and the results showed that there are a consistent 

result among the compared and modified SEBAL-based LSE 

estimation methods.   

 

Keywords—ASTER, Land surface emissivity, LDCM, 

Modification SEBAL, SEBAL. 

 

I. INTRODUCTION 

Land surface emissivity (LSE) is defined as the 

"emitting ability" of a natural material, compared to that of 

an ideal blackbody at the same temperature [1]. Emissivity 

is a measure of the inherent efficiency of the surface to 

convert heat energy into radiant energy. There are several 

definitions of the emissivity, such as the, e-emissivity, r-

emissivity and the apparent emissivity [2].  The e-

emissivity is defined as the ratio of the total radiation of a 

natural object surface to the blackbody radiation by 

assuming that there is an identical temperature distribution 

with heterogeneous pixels[2]. [3] pointed out that 

heterogeneous gray surfaces, do not behave as gray of 

surfaces. To handle this problem, apparent emissivity was 

proposed to keep the Planck’s function unchanged. 

According to the Kirchhoff’s law, [4] defined the r-

emissivity from the hemispherical directional reflectivity.  

The r-emissivity definition is based on the Kirchhoff’s law 

and applicable for heterogeneous flat surfaces. Since, the r-

emissivity is measured from space; it is used for LSE 

retrieval from space-based measurements. Because 

different composition of surface objects is always 

combined in one single pixel, the emissivity is complicated 

to estimate. Satellite-based emissivity estimates depend 

largely on the composition, roughness and other physical 

parameters of the surface, such as its moisture content [5]. 

LSE is not only a basic parameter for land surface 

temperature (LST) retrieval, but also a vital parameter to 

measure the thermal infrared radiation of objects [6]. LSE 
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provides useful information for geological and 

environmental studies, mineral mapping and it is one of the 

important input parameters for climate, hydrological, 

ecological and biological models [7, 8]. Several methods 

exist to estimate spectral emissivity from satellite data, 

which apply the Visible and Near-Infrared (VNIR) or 

Thermal Infrared (TIR) spectral regions or both of them 

[2]. According to the way by which the LSE is determined 

along with LST, the emissivity estimation methods of 

optical remote sensing data can be categorized into three 

distinct types [2]. 

The first group is a stepwise retrieval method that 

determines the LSE and the LST separately. Representative 

methods of this group include the NDVI Based Emissivity 

Method (NBEM) [9, 10], Surface Energy Balance 

Algorithm for Land (SEBAL) [11], the Classification-

Based Emissivity Method (CBEM) [12, 13], and so forth. 

The second group of algorithms retrieve simultaneous both 

LSE and LST with known atmospheric information from 

at-surface radiance, based on some assumptions or 

constraints. The representative methods of this group 

consist of the physics-based day/night operational method 

[14],normalized emissivity method (NEM)  [15], adjusted 

normalized emissivity method (ANEM) [16, 17], surface 

reflectance signature classification (SRSC) [18],the 

reference channel method (RCM) [19], temperature 

emissivity separation (TES) method [20], gray body 

emissivity method (GBEM) [21], and so on. The third 

group simultaneously retrieves the atmospheric profiles 

along with both LST and LSE. The representatives of this 

group are the artificial neural network (ANN) method [22] 

and the two-step physical retrieval method [23] which are 

mostly used for thermal hyperspectral imaging. 

As described, various LSE estimation methods have 

been proposed with the same aims and conditions of 

various applications, benefits, and limitations [2]. The 

emissivity of natural surfaces may vary significantly due to 

differences in soil structure, soil composition, organic 

matter, moisture content and differences in vegetation 

cover characteristics. LSE is also a function of the wave 

bandwidth [24]. Broadband thermal emissivity has been 

shown to vary considerably from narrowband values for the 

same surface [25]. Broadband emissivity, especially in the 

8-14 m region, is also susceptible to the effects of 

atmospheric water vapour [10]. Also, the dynamic range of 

emissivities of contrasting surfaces is greater in the 

broadband than in the narrowband, and may result in a 

greater potential for error in surface temperature 

calculations [24].  Moreover, a few studies have shown that 

an error of 1 % in the LSE can lead to an error in the LST 

ranging from 1 K to 2 K in LST using single channel (SC) 

algorithm around 10 microns [2]. Thus, a small 

improvement in LSE can influence LST remarkably. The 

studies by [26] showed that the use of the broadband 

emissivity in one channel instead of the narrowband 

emissivity may result in large errors on the calculated 

surface parameters. On the other hand, there are few 

spectral measurements available beyond 14.0 μm for 

natural objects because of the limitation of the measured 

instruments and the strong atmospheric absorption in the 

longwave TIR region [26]. In addition, there are also very 

narrow spectral channels in the atmospheric windows for 

satellite sensors. Now the question arises: which spectral 

domain’s emissivity can best representative of the 

narrowband and broadband emissivity in the completely 

electromagnetic region for the calculation of the Earth 

emitted radiant flux and surface parameters. The splitting 

of the electromagnetic spectra into several spectral domains 

and computing the contribution of each spectral domain to 

the overall value of the Earth emitted radiant flux can be 

considered as a suitable approach [27]. 

SEBAL is one of the most widely applied remotely 

sensed surface energy balance models which is comprised 

of twenty-five computational sub-models that calculate 

surface variables such as evapotranspiration (ET), LSE, 

LST and other energy exchange at the earth’s surface [28]. 

The broadband surface emissivity is an important 

parameter for estimating the longwave surface energy in 

SEBAL methodology. The broadband emissivity can vary 

significantly, because the spectral emissivity ranges from 

0.7 to 1.0 for bare soils and rocks in the 8–12 µm range. 

Two surface emissivities are used in the SEBAL algorithm. 

The first is an emissivity representing the surface behavior 

for thermal emission expressed as NB. The second is an 

emissivity representing the surface behavior for thermal 

emission in the broad thermal spectrum (6 to 14 µm), 

expressed as 0. NB is used in the calculation of LST and  

0 is used later on to calculate total long wave radiation 

emission from the surface [29, 30]. As defined by Reuter, 

Richardson [31], the two spectral channels of LDCM, 

centered near 10.9 and 12 microns, essentially double 

sample the single thermal band in the heritage TM/ETM+ 

systems. The bandwidths of LDCM in TIR region are 

narrower than of ETM+ and other broad band sensors that 

is used in SEBAL algorithm. Broadband emissivity is 

insensitive to surface temperature, for common surface 

temperatures [32], while narrow-bands emissivity are 

sensitive to LST and should be considered. This results in 

different responses from the surface, which in turn may 

alter the surface emissivity and temperature.  

This study focuses on estimating the relationship 

between broadband and narrowband emissivity from the 

emissivities derived from the two LDCM thermal channels. 

On the other hand, this research investigates the effects of 

SRF and the effective wavelength on SEBAL-based LSE 

estimation method. In this paper, a modified SEBAL-based 

LSE estimate method, MLSE-SEBAL, is adopted according 

to SRF of two narrow thermal bands of LDCM and is 

modified rather than initial LSE on broadband estimation. 

This paper is organized as follows: In the introduction 

section, a brief description of the most common LSE 

estimation methods, as well as the objectives of this 

research is presented. In the sections, 2 and 3, after the 

presentation of data sets, pre-processing data are 
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implemented. In section 4, the proposed methodology is 

explained in detail. In section 5, the results of the methods 

and experiments are analyzed and the final section, 

conclusions are given. 

II. STUDY AREA AND DATASETS 

The study area is an arid and semi-arid region, which is 

situated in the southern part of Iran. This area has various 

climate types with a diverse land cover including mixed 

pixels covered by different vegetation, soil, and rocky 

terrain types. It lies between latitudes 26° 25'–32° 44'N and 

longitudes 50° 32'–55° 54'E. The land use data, including 

seventeen classes provided by the ministry of Jihad and 

agriculture and one scene of LDCM data, Level 1T, 

captured on 14 June 2013 are shown in Fig. 1. Recently, 

the United States Geological Survey (USGS) on January 

29, 2014, updated calibration parameters and Geometric 

alignment between the Operational Land Imager (OLI) and 

Thermal Infrared Sensor (TIRS) sensors of LDCM and 

changed the relative gains in the Calibration Parameter File 

(CPF) since launch. Therefore, USGS reprocessing scenes 

for on-demand product orders. In our research, LDCM 

data, Level 1T, captured on 23 June 2013 (and reprocessed 

by USGS based on calibration improvement parameters. 

(http://landsat.usgs.gov/calibration_notices.php). 

 

 

Fig 1. The study area, land use data, Location of LDCM data and 

LSE product of ASTER that used in the study (provided by the 

ministry of Jihad and agriculture of Fars province). 

 

It is worth noting that LDCM datasets used in this study 

were ordered to be reprocessed by USGS based on 

calibration improvement parameters. Indeed, the United 

States Geological Survey (USGS) on January 29, 2014, 

updated calibration parameters and Geometric alignment 

between the OLI and TIRS sensors of LDCM and changed 

the relative gains in the Calibration Parameter File (CPF) 

since launch. Therefore, USGS reprocessing scenes for on-

demand product orders. In our research, LDCM data, Level 

1T, captured on 23 June 2013 (and reprocessed by USGS 

based on calibration improvement parameters. 

(http://landsat.usgs.gov/calibration_notices.php). In this 

research, apart from the LDCM data, two scenes of the 

LSE standard product of Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) for LSE 

validation, was used. To evaluate all LSEs estimate 

methods (i.e. Modified and three compared LSE estimation 

methods), two LSEs standard products of ASTER as a 

reference was used for all methods. This product is 

generated from the ground surface emissivity (2B01T) data 

on 19 April 2013. The spatial resolution of this product is 

90 m and was yielded by temperature emissivity separation 

(TES) algorithm. Based on numerical simulation, TES can 

recover LST within about ±1.5 K, and LSE within about 

±0.015[20]. The [33] points out that the LSEs estimate by 

the ASTER TES algorithm is usually in qualitative 

agreement with field or laboratory measurements. 

Therefore, the estimated LSEs achieved by all methods are 

compared with this product for the whole image in terms of 

root mean square error (RMSE) measure in corresponding 

thermal bands.  

 

III. CHANNEL EMISSIVITY AND DATA PRE-

PROCESSING 

A. Channel emissivity 

Similar to channel radiance, channel emissivity can be 

defined by convolving spectral emissivity with the 

normalized channel response function. Ideally, the 

convolution should also include the temperature 

dependency via the Planck's function, B(TS), for black 

body emission. By definition, the channel emissivity (i) 

for a specified sensor is given by [1, 34, 35]: 
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Where  denotes wavelength, B(TS) is the Planck's 

function for black body emission, Ri() is the normalized 

spectral response function (SRF) of the sensor in channel i 

and () is the spectral emissivity for various surfaces can 

be obtained by field or laboratory measurements, 1  and 2 

are referred to the lower and upper wavelength for the 

corresponded spectral domain. Although in Equation (1), i  

depends on LST, however, in a terrestrial temperature 

range, LSE is almost independent of LST [36], and so the 

variation of i with LST is negligible (10
-4

). Therefore, 

the channel emissivity can be expressed as Equation. (2).  
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The main problem in determining emissivity from Equation 

(2) is the observation of emissivity of natural surfaces at 

satellite spectral and spatial resolutions [1]. LSEs and 

specially LST can vary due to shadowing effects and 

topographic effects [37]. Therefore, it is necessary that 

atmospheric correction, shadow removal and topographic 

correction apply to the data. As can be seen in Equation (2) 

and (3), LSE is depending on the effective wavelength of 

the thermal band and SRF of sensors. Figure 2, shows a 

comparison of the TIRS spectral bandwidths of LDCM 

with the previous Landsat thermal channel (ETM
+
). 

 

 

Fig. 2. Comparison of the relative spectral response of the LDCM 

TIRS thermal channels with the previous Landsat instrument (ETM+) 

(SRF data from USGS). 

 

According to researchers [38, 39], the effective 

wavelength is defined by the following equation: 
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Where, R is the normalized SRF of the thermal band, 

which is given with discrete pattern and in finite range. 

Consequently, estimating the effective wavelength is an 

issue that is how to tackle the discrete integration properly, 

which is also called ‘numerical integration’. More 

explanation and  the calculation methods of effective 

wavelength is provided by [38]. The effective wavelengths 

of TIRS/LDCM are 10.9036 μm and 12.0030 μm for bands 

10 and 11, respectively[40]. In addition, it is 11.256 μm for 

thermal band 6 of ETM
+
[41]. 

 In this study, the ASTER spectral library (v2.0), ranging 

from 0.4 to 14 μm is used for the spectral emissivity of 

classes in thermal (10.60 - 11.19 µm) and (11.50 - 12.51 

µm) spectral ranges from Kirchhoff’s law (Emissivity=1-

Reflectance). This library was measured in directional 

hemispherical reflectance under most conditions that the 

infrared portion of these data can be used to calculate 

emissivity using Kirchhoff's Law, which has been verified 

by both laboratory and field measurements [42, 43].  

 This library includes data from three other spectral 

libraries: the Johns Hopkins University (JHU), the Jet 

Propulsion Laboratory (JPL), and the United States 

Geological Survey (USGS) Spectral Library [44, 45]. Then, 

the spectral emissivity of each spectrum is computed by 

Kirchhoff’s law in the thermal range of TIRS on LDCM. 

On the other hand, we simulated TIRS/LDCM channel 

emissivities of band 10 and 11 using Equation (2) from the 

ASTER spectral library for all the samples of rocks, soils, 

vegetation, water and so on. The obtained emissivities of 

seventeen classes along with their standard deviations in 

TIRS bands of LDCM are given in Table I. At first, main 

classes such as forest, grasslands, rocky, water, soil, 

vegetation, dry vegetation and mineral are obtained from 

the ASTER spectral library by Equation. (2). Moreover, the 

emissivity values of two classes ( woodlands-shrubbery 

and saline soils-salt) are obtained from [46]. Then, the 

emissivity values for combined classes experimentally set 

as follows (Table I). It is noteworthy that emissivity values 

of combined classes only was used for classification based 

emissivity method (CBEM) in this study. 

The choice of a typical emissivity value for some surface 

objects such as soil is a more critical question, because the 

variability of emissivity values for soils is more than 

vegetation and other ones [47]. In order to estimate the 

emissivity of a given class, initially the ελ of a set of similar 

classes (e.g. 113 spectral emissivities was chosen for soils 

class) are selected from the ASTER spectral library. 

Therefore, the mean value of spectral emissivities is 

considered for the emissivity of each class. After 

calculating the emissivities for the classes, radiometric 

correction was conducted, the emissivities of the LDCM 

data through three compared, and one modified proposed 

LSE estimation methods were determined. 
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Table I.Emissivities of classes in band 10 and 11 of LDCM data 

Class source of emissivity value aε10 
bσ10 ε11 σ11 

Dense Forest ASTER spectral library 0.9817 0.0080 0.9842 0.0095 

Semi-dense forest (Emis_soil + Emis_ forest)/2 0.9787 0.0071 0.9821 0.0079 

Low-dense forest (2*Emis_soil + Emis_ forest)/3 0.9757 0.0061 0.9800 0.0063 

Irrigated cropland and gardens (Emis_water + Emis_soil +Emis_ forest)/3 0.9863 0.0080 0.9852 0.0095 

Dense Grasslands ASTER spectral library 0.9833 0.0080 0.9886 0.0095 

Semi-dense Grasslands (Emis_soil + Emis_ Grasslands)/2 0.9799 0.0040 0.9854 0.0033 

Low-dense Grasslands (2*Emis_soil + Emis_ Grasslands)/3 0.9765 0.0066 0.9821 0.0071 

Rocky terrain ASTER spectral library 0.9613 0.0129 0.9544 0.0094 

Rain fed cropland and gardens (Emis_Veg + Emis_soil +Emis_ forest)/3 0.9757 0.0041 0.9800 0.0051 

Everglade Lands (Emis_water + Emis_ forest)/2 0.9871 0.0041 0.9852 0.0051 

Woodlands and shrubbery From Reference [46] 0.9700 0.0051 0.9770 0.0047 

Residential areas and urban ASTER spectral library 0.9479 0.0151 0.9541 0.0149 

Forest planting ASTER spectral library 0.9787 0.0059 0.9822 0.0047 

Swamp (Emis_Veg + Emis_dry.veg + Emis_water)/3 0.9752 0.0048 0.9772 0.0075 

Saline soils and salt From Reference [46] 0.9650 0.0041 0.9710 0.0031 

Water areas ASTER spectral library 0.9909 0.0001 0.9861 0.0007 

Riverbed (Emis_water + Emis_ mineral)/2 0.9657 0.0027 0.9759 0.0021 

a, channel emissivity: b, standard deviation of the channel emissivity 

 

 

B. Data pre-processing  

Obviously, in order to use satellite-imaging data for 

quantitative remote sensing of land surfaces, the 

atmospheric and topographic effects must be removed. An 

effective removal of atmospheric and topographic effects 

on remote-sensing imagery is an essential pre-processing 

step for deriving a good estimate of physical parameters of 

the earth's surface, i.e. surface spectral reflectance, 

emissivity and temperature. The various techniques that 

remove these effects have been proposed and consist of 

specific combinations of an atmospheric and a topographic 

correction method. Atmospheric and Topographic 

Correction (ATCOR) is a method used to eliminate 

atmospheric and illumination effects on satellite imagery.  

In this study, ATCOR23, independent interactive data 

language (IDL) programming based on MODRAN-4, is 

used for atmospheric correction of rugged terrain by 

integrating ASTER digital elevation model (DEM).  
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Figure 3. DEM and its derivatives in a part of the image: (a) DEM (b) slope, (c) slope, (c) sky view.  

 

Then, using the ATCOR23, topography and atmospheric 

correction were performed over the LDCM image. 

ATCOR23 has two separate options: ATCOR 2 and 

ATCOR3. ATCOR 2 is used for atmospheric correction in 

the flat area and ATCOR3 includes all of the capabilities of 

ATCOR2 and can be integrated with a DEM for 

atmospheric correction of images depicting rugged 

terrain[18]. It employs a large high-resolution atmospheric 

database, compiled using the “MODerate spectral 

resolution atmospheric TRANSmittance algorithm and 

computer model” (MODRAN) code employing DISORT, 

8stream option (DIScrete Ordinate Radiance Transfer) for 

computing multiple scattering components of the total path 

radiance [18, 48].  In this study, sensor and image 

information (such as solar and the sensor zenith angle at the 

time of data acquisition, azimuth angle of solar and sensor, 

the date and time of image acquisition, pixel size, 

calibration file include gain /offset of bands and etc.) from 

metafile of images were introduced to ATCOR. In addition, 

it uses the algorithm dark dense vegetation (DDV) to 

estimate the atmospheric optical thickness or visibility [18, 

49]. Moreover, atmospheric and aerosol model based on 

the longitude of the study area and date and time of image 

acquisition was determined and were introduced to 

ATCOR. Figure 4 shows these corrections on the part of 

the image. It is noteworthy that sky-view factor can be used 

as a general relief visualization technique to show relief 

characteristics. In particular, this visualization is a very 

useful tool in the recognition of small scale features from 

high-resolution DEMs [50]. 

 

Fig. 4. Topographic and atmospheric correction are shown in the partly of the images: (a) original image, (b) corrected image. 
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IV. THE MODIFICATION OF SEBAL 

METHOLOGY 

The SEBAL was provided by [11] which uses spectral 

radiances, together with weather and climate data, to solve 

the energy balance Equation at the earth's surface. Several 

common vegetation indices are used in the SEBAL 

method. Normalized Difference Vegetation Index (NDVI), 

Modified Soil Adjusted Vegetation Index (MSAVI), 

Weighted Difference Vegetation Index (WDVI), and Leaf 

Area Index (LAI) indices are computed using the 

reflectance values. Indeed, NBEM and SEBAL are 

vegetation-based LSE estimation methods. The NBEM use 

only one vegetation index (NDVI), while SEBAL utilizes 

several vegetation indices (SAVI, NDVI, and LAI). The 

various studies [51-53] stated that the aim of using the 

several vegetation indices is minimized soil background 

and brightness effects on LAI. In this study area, pixels 

usually contain a mix of vegetation and soil context. 

SEBAL and twenty-five their computational sub-models 

calculate different surface variables [28]. Many studies 

have been used to compute LSE from the SEBAL method 

[30, 54].One of the sub-model of this algorithm is for LSE 

estimation in the wider broadband that shown in Equation 

(4). 
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SEBAL algorithm not only has been used for different 

data from satellite remote sensing with wide broadband (3-

14 μm), but also it is used in calculating the LSE and LST 

in the relatively wide broadband (8-14 μm) spectral range. 

The Landsat 8 satellite (LDCM) with two thermal infrared 

bands provided another opportunity for the estimation of 

LSE and LST. In the LDCM, the (8-14 μm) spectral range 

divided into the narrow ranges of thermal bands. Therefore, 

the use of the primary SEBAL algorithm is not true and 

causes errors in LSE and LST estimation. Therefore, this 

algorithm should be modified and corrected rather than to 

narrow thermal bands of LDCM. It is worthy to note that 

the LAI in Equation (4), is computed through MSAVI 

using the empirical equation proposed by [55]. 

In this research, the implementation of the modified LSE 

estimation methodology, MLSE-SEBAL, consists of four 

steps as in the following flowchart in order to improve the 

LSE estimates for the LST retrieval (Fig. 5).  
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Fig. 5.The flowchart of proposed methodology in this study 

 

In the first step, the initial values of emissivities have 

been calculated for all land use classes using the ASTER 

spectral library as aforementioned and data pre-processing 

including atmospheric and topographic correction were 

conducted. In the second step, modification SEBAL-

based and three other compared LSE estimation methods 

were applied based on TIR bands of LDCM. These 

methods include (i) NBEM, (ii) MLSESEBAL, (iii) CBEM, 

and (iv) ANEM. In the third step, for LSE validation, the 

LSEs obtained by MLSESEBAL proposed and three 

individual methods were compared with earth surface 

emissivity (2B04) standard product of Advanced 

Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER). In the final step, the results of the methods and 

experiments are analyzed and conclusions are given. 

Two emissivities are used in initial SEBAL algorithm 

which the first emissivity represents the surface behaviour 

for thermal emission in long wave infrared (LWIR)(8-

14µm) that expressed as NB, and the second emissivity 

represents the surface behaviour for thermal emission in the 

broad thermal spectrum (3-14 μm) is used to estimate the 

net longwave radiation. In this research focused on this 

emissivity. The first emissivity is used in the calculation of 

the LST. To this end, NB for the according to their SRF of 

TIR bands of LDCM has been modified by using the 

ASTER spectral library. The spectra of rocks, soils, 

vegetation, water, so on, which are essential components of 

the terrestrial ecosystem, are collected in this study. In total 

257 spectral samples from the ASTER Spectral library are 
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used to develop our modification method. The ASTER 

library contains directional hemispherical spectral 

reflectance; therefore, we converted to spectral emissivity 

using Kirchhoff’s law. In the current study, according to 

the SRF of two very narrow TIR bands of LDCM, (10.60 - 

11.19 µm) and (11.50 - 12.51 µm) spectral ranges , the 

emissivity, εNB, were yield as Equations (5).  

10

11

10

11

1

0.969781 0.004100
;  (NDVI 0 & LAI 3)    

0.976116 0.003106      

0.98173200
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with assuming the spectral response is rectangle, the 

broadband emissivity can also be written by [34] 
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Equation 6 shows that the broadband emissivity is 

linearly related to the narrowband channel emissivities with 

coefficients gi nearly independent on the surface 

temperature [34]. Therefore, other researchers also linear 

formula implanted between broadband and narrow bands 

emissivities [26, 56]. According to this, in this study, we 

have assumed a linear relationship between the broadband 

and narrow bands (i.e. initial SEBAL-based LSE 

estimation method and modification MLSESEBAL 

methodology  (  emissivities. 

   (9)

11

10

    c      BroadBand NarrowBand
ch ch

ch

a 


  
 

We calibrated the linear regression using the ASTER 

spectral Library. The calibrated coefficients were a10–a11 as 

0.8049, and 1.2733E-11, respectively, and c as 0.1894. The 

RMSE in calibration and validation of Equation. (9) were 

1.5692E-13.  

 

 

 

 

 

 

Fig. 6. Comparison of initial and modified SEBAL method for band 10 and 11 of LDCM. 
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Fig. 7. Comparison of initial and modification SEBAL method in the vegetated and non-vegetated areas, (a) for band 10 of LDCM, (b) for 

band 11 of LDCM  

 

By comparing achieved LSEs of initial SEBAL-based 

and modified methods in the Figures 6 and 7a, b, it can be 

seen the effects of SRF, effective wavelengths, physical 

and vegetation of earth’ surface parameters in the LSE 

estimation by SEBAL algorithm. Effective wavelength is 

relatively close together in the initial and band 10 of 

modified SEBAL method. Therefore, the LSE estimation in 

the non-vegetated area is almost identical and there is no 

significant difference, while it is different in the vegetated 

area. The difference between vegetated areas and non-

vegetated areas can be easily seen from LAI index. These 

changes are the result of the impact of environmental 

parameters such as moisture, texture, the canopy of 

vegetation and SRF, which can be affected on the LSE 

estimation. Moreover, by comparison, achieved LSEs of 

primary SEBAL-based and band 11 of MLSESEBAL 

methods in the Figures 6 and 7a, b, it can be seen that there 

is a relatively large difference in the effective wavelength 

and SRF between them. In this case, areas with vegetation 

and no vegetation have the same performance and the 

greatest difference in LSE estimation. On average, there are 

0.22% and 0.61% improvement between initial and 

modified SEBAL methodology for band 10 and band 11, 

respectively.  

As previously mentioned, a few studies have shown that 

an error of 1 % in the LSE can lead to an error in the LST 

ranging from 1 K to 2 K in LST using single channel (SC) 

algorithm around 10 microns [2]. Thus, a small 

improvement in LSE can influence LST remarkably. 

Although broadband emissivity varies greatly with 

location, especially in non-vegetated area, while 

narrowband emissivity has tangible variation in the areas 

with dense vegetation. These changes can be the effects of 

SRF and effective wavelengths in the impact of 

environmental parameters for LSE estimation.  

 

A. LSE Comparison and Validation 

In this part, for comparison and validation of the 

proposed MLSESEBAL method, other three common LSE 

estimation methods, including (i) NBEM, (ii) CBEM, (iii) 

ANEM were implemented as follows. 

1) NDVI Based Emissivity Method (NBEM) 

Different approaches have been used to predict LSE 

from NDVI values [9, 10, 57-61]. Fully vegetated areas are 

approximate blackbodies and the emissivity spectrum is 

nearly constant and near unity. Therefore, estimating the 

emissivity spectrum of these types of surface is less 

important than for surfaces of soils or rock. In fact, the 

NDVI approach assumes a constant value of emissivity for 

these areas. In the over particular areas, NDVIVeg and 

NDVIsoil values can be extracted from the NDVI histogram 

that was proposed by Sobrino, Jiménez-Muñoz [9]. For 

those pixels composed of soil and vegetation (mixed pixels, 

NDVIsoil <NDVI< NDVIVeg), the method uses the 

following simplified Equation (10). 

 ( ) ( ) ( ). 1   ; i=1,2         (10)
i i i imix veg v soil vp p C        

 

Where veg and soil are the soil and vegetation 

emissivities, respectively. i refers to two thermal bands of 

TIRS sensor of LDCM, PV is the proportion of vegetation 

(also referred to as fractional vegetation cover, FVC), and 

C is a term which takes into account the cavity effect due to 

surface roughness. Using the geometrical model proposed 

by the [9], the cavity term for a mixed area and near-nadir 

view is given by: 

   ( ) ( ) (11) 1 . . 1   ;   i=1,2      
i i isoil veg VC F P      

Where F   is a geometrical factor ranging from zero to one, 

depending on the geometrical distribution of the surface 

[62]. Since  F   cannot be estimated from VNIR/TIR data, a 
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mean value is chosen. Moreover, PV values are obtained 

from the NDVI according to Equation (12) [63]. 

2
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veg soil
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In this study, NBEM proposed by [9] was used. 
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The water body areas in each scene masked and their 

emissivities were assigned independently. In other areas, 

NDVIVeg and NDVIsoil were determined by the NDVI 

histogram and the NDVIsoil and NDVIVeg values were set to 

0.20 and 0.50, respectively.   

 

2) Classification Based Emissivity Method (CBEM)  

Generally, CBEM uses conventional land cover data. 

This method assumes that similarly, classified land covers 

types exhibit very similar LSEs [1, 12, 13, 64, 65]. DEM-

based topographic corrections on satellite imagery from 

rugged terrain, as effective processing techniques to 

improve the accuracy of Land Use/Land Cover (LULC) 

classification as well as land surface parameter retrievals 

with remotely sensed data [66]. As is widely known, the 

pixel-based image classification approach classifies remote 

sensing images according to the spectral information in the 

image ‘pixel by pixel’. In this study, atmospheric and 

topographic corrected image was classified using a 

Maximum Likelihood Classification (MLC) algorithm. The 

authors are aware of some limitations to the ‘per pixel 

approach’ [67], but in this case the MLC produced very 

satisfactory results. Then, the obtained initial emissivities 

from Table I assign to each pixel according to its class 

label. The overall accuracy (OA) of classified image is 

about 91.21 %.  

3) Adjusted Normalization Emissivity Method (ANEM) 

This Normalization Emissivity Method (NEM) assumes 

a constant emissivity in all channels for a given pixel, 

provided that the atmospheric effects are corrected [17]. In 

the adjusted NEM (ANEM) the assigned emissivity is 

surface cover dependent [18]. The ANEM  is  based  on  

the  combination  of  the vegetation  cover  method  (VCM)  

and  the  Normalized  Emissivity  Method  (NEM). This 

method uses of the VI and NIR data to estimate the 

vegetation cover and assigned the maximum emissivity 

based on VCM. ANEM, instead of using a fixed value of 

emissivity, sets the initial value of emissivity regarding the 

spatial variation of emissivity with VCM. Estimating 

channel emissivities in a pixel-by-pixel way can be done by 

VCM, using coefficients fit in each band. In this study, 

ANEM is implemented based on the mathematical 

structure proposed by [16] and [68]. For each channel, the 

maximum emissivities from the ASTER spectral library are 

assigned to class emissivities according to SRF of TIRS 

/LDCM.  

B. LSE Validation 

1) Image-Based Cross-Validation (IBCV) 

There are two procedures to validate the LSE values 

retrieved from space [59, 69]. The first, known as the direct 

method, directly compares the ground-based measurements 

with satellite-derived products. The second, known as the 

indirect method, indirectly validates the non-validated 

product with the various satellite-derived products, model 

simulations, or other information and applications.  The 

studies by [33] points out that the LSEs estimate by the 

ASTER TES algorithm is usually in qualitative agreement 

with field or laboratory measurements. In the current study, 

indirect method of LSE is used and the achieved LSEs of 

bands 10 and 11 in the LDCM data were compared with 

the corresponding LSE standard product of ASTER (i.e. 

bands 13 and 14) in the whole image that is known to 

Image-Based Cross-Validation (IBCV). To evaluate and 

validation of all LSE estimation methods (i.e. three 

common compared and modified proposed methods), two 

LSE standard products of ASTER were used as a reference 

for all methods. This product was generated from the 

ground surface emissivity (2B01T) data on 19 April 2013. 

Moreover, the spatial resolution of this product is 90m and 

was obtained by the TES process. 

Therefore, the achieved LSEs by the three compared 

along with MLSESEBAL LSE estimation methods are 

compared to each other with corresponding thermal bands 

of the ASTER product for the whole image in terms of 

RMSE. The obtained results of IBCV are shown in Fig. 8a, 

b, and Fig. 9a, b, in the first and second scenes of ASTER, 

respectively. 

The same calculation is performed on the second scene 

of ASTER product and the results for RMSE measure are 

given in Fig. 9a, and b.  
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Fig. 8. IBCV of LSEs of bands 10 and 11 in the LDCM data for compared and proposed methods in first examined scene. (a) RMSE of LSEs 

for band 10, (b) RMSE of LSEs for band 11. 

 

        

Fig. 9. IBCV comparison of LSEs of bands 10 and 11 in the LDCM data for compared and proposed methods in the second examined scene. 

(a) RMSE of LSEs for band 10, (b) RMSE of LSEs for band 11. 

 

 

As illustrated in Fig. 8a, b, and Fig. 9a, b, the results of 

the three common compared methods are worse than the 

result obtained by the MLSESEBAL proposed method. 

Moreover, in MLSESEBAL method almost displayed 

appropriate performance in term of RMSE measure. The 

results show that the RMSE of LSE obtained by 

MLSESEBAL method is 1.59% and 1.21% in thermal band 

10 of the first and second examined scenes, respectively. 

Moreover, for the thermal band 11, the error values of 

MLSESEBAL method are 1.56% and 0.98% in the two 

examined scenes, respectively. Generally, the experimental 

results demonstrated that the MLSESEBAL perform 

significantly better than the compared methods for LSE 

estimation. Moreover, We conducted the LSE validation, 

on the whole image in initial and modified SEBAL-based 

LSE estimation in comparison with two scenes the LSE 

product of ASTER in term of RMSE measures, and the 

results were given in Fig. 10a, b, c, d and Fig. 11a, b, c, d, 

in the first and second scenes of ASTER, respectively. 

As illustrated in Fig. 10a, b, c, d and Fig. 11a, b, c, d the 

results of the modified SEBAL-based LSE estimation 

method is better than the result obtained by the initial 

SEBAL method in term of RMSE measure.  

 

2) Class-Based Cross-Validation (CBCV) 

To investigate the effects of surface parameters on LSE 

estimation by three compared and MLSESEBALmethods, an 

assessment was conducted in each class. In this regard, the 

CBCV was performed on the available classes based on 

land use data in the corresponding thermal bands of the 

LDCM and ASTER data. The results are shown in Fig. 

12a, b, and Fig. 13a, b in term of RMSE. 
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Fig. 10. Cross-comparison of the initial and modified SEBAL-based LSE estimation methods in the first examined scene. (a) and (b)  Error 

emissivity of initial SEBAL method for band 10, and band 11, respectively,  (c) and (d)  Error emissivity of MLSESEBAL for band 10 and 

band 11, respectively. 

 

               

              

Fig. 11. Cross-comparison of the initial and modified SEBAL-based LSE estimation methods in the second examined scene of ASTER. (a) 

and (b)  Error emissivity of initial SEBAL method for band 10, and band 11, respectively,  (c) and (d)  Error emissivity of MLSESEBAL for 

band 10 and band 11, respectively. 
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Fig. 12. CBCV of the three compared and modified SEBAL-based 

LSE estimation methods in comparison of the first examined scene 

of ASTER in term of RMSE. (a) Error emissivity for band 10, (b) 

Error emissivity for band 11.  

 

Fig. 12a and b show the comparison results of compared 

and modified methods in each class in terms of RMSE for 

bands 10 and 11, respectively. The same calculation was 

performed on the second ASTER scene and the results are 

given in terms of RMSE in Fig. 13a and b for bands 10 and 

11, respectively.  

 

 

 

Fig. 13. CBCV of the three compared and modified SEBAL-based 

LSE estimation methods in comparison of the second examined 

scene of ASTER. (a) Error emissivity for band 10 in term of RMSE, 

(b) Error emissivity for band 11 in term of RMSE. 

 

There are a consistent result among the compared and 

modified SEBAL-based LSE estimation methods in non-

vegetation classes like L class or classes which, consist of 

lower vegetation density and high fraction soil such as F3, 

R3 and URB classes. In contrast, the obtained results of 

CBCV (Fig. 12a, b and Fig. 13a, b) showed that in classes 

that consist density vegetation the MLSESEBAL and NBEM 

demonstrated almost the same results and better 

performance rather than ANEM and CBEM methods. 

These changes are the result of the impact of 

environmental parameters such as moisture, texture, 

canopy of vegetation and SRF, which can be effect on the 

LSE estimation. 

3) The Sensitivity Analysis of LSE Improvement on LST 

Having LSEs, the LST can be retrieved by different 

methods. There are many LST retrieval methods for 

Landsat data in the literature [70-74]. Landsat 4 and 5, and 

following by Landsat 7, there was only one thermal 

infrared channel available [75, 76]. Therefore, a single-

channel (SC) algorithm was developed to derive LST from 

this band. Influential researchers were conducted mainly by 

[39, 47, 77] and [78]. In [47] three famous SC 

algorithms,(i) the radiative transfer equation, (ii) Qin et 

al.’s algorithm, and (iii) Jimenez-Munoz and Sobrino’s 

(SC
JM&S

) algorithm, to retrieve the LST from the single 

thermal band are compared. The SC
JM&S 

algorithm shows a 

good performance for water vapor content values between 

0.5 and 2 g·cm
−2

, with RMSE values below 1 K [77]. In 

contrast to previous Landsat satellites, the TIRS of LDCM 

data contains two thermal channels, which split-window 

(SW) and SC algorithms are capable of utilizing for LST 

retrieval [79]. Considering the strip problem, ghost signal 

caused by stray light and a time-varying absolute 

calibration error for TIRS, the validation exercise is still a 

tough problem [80]. Therefore, based on the USGS 

recommendation on the LDCM data, the SC algorithm of 

[39] is used.  To this end, to evaluate the impact of the LSE 

improvement on LST, the SC
JM&S

 algorithm of [39] is used. 

SC algorithm is utilized for sensitivity analysis using only 

band 10. Therefore, the alg is below 1 K since the VW 

content of the study area is 1.2 for the examined dataset 

(Table II). The SC
JM&S 

algorithm retrieves LST (Ts) using 

the general Equation (14). 
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where Lsen is the at-sensor radiance in w m
2
 sr

-1
 µm

-1
, 

Tsen is the at-sensor brightness temperature in K, e is the 

effective wavelength in µm, k1 and k2 are constant of 

thermal bands in  W m
2
 sr

-1
 µm

-1
 and K, respectively. ε is 

the surface emissivity and unitless, ψ1, ψ2, and ψ3 are 

referred to as atmospheric functions (AFs) which computed 

by Equation (15) [79]. 

1 2 3

1
 ,      ,           (15)

L
L L  

 


        

Where L is the upwelling radiation and L is the 

downwelling radiation in w m
2
 sr

-1
 µm

-1
  and  is unitless 

and atmospheric transmittance.  
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Table II.Atmospheric parameters for LDCMa 

Scene   L
 L

 WV  

162-40 0.85 1.19 1.98 1.20 

a.  , atmospheric  transmissivity: L
, upwelling radiation: L

, 

downwelling radiation:WV , water vapor 

 

For each image, , L and L were obtained using 

online radiative transfer codes 

(http://www.atmcorr.gsfc.nasa.gov/) from Atmospheric 

Correction Parameter Calculator (ACPC) developed by 

NASA for Landsat satellites [81, 82] (Table II). Validation 

of ACPC parameters by [83] revealed that LSTs derived 

from ETM+ at-sensor radiances by ACPC parameters have 

differences from ground measured LSTs over rice fields 

within the ±1.0K range. The sensitivity analysis of the SC 

algorithm was performed to solve the problem if the 

accuracy of LST retrieval would be improved after the 

improving of LSEs estimate. The RMSE of LST is not only 

affected by the SC coefficient’s precision, but also by other 

factors, which play the main role in the error of LST. These 

factors are total atmospheric WV content and emissivity. In 

this study, the method of sensitivity analysis, similarly as 

in [39, 84] is used. Hence, the contribution to the error of 

LST is given by Equation. (16). 

 

2 2 2 2

alg wv                                      (16)Overall

Ts NE T        

 

where Overall

Ts is the overall standard deviation of LST,alg 

is the standard error of the algorithm, NEΔT is the 

contribution of the Noise Equivalent Delta Temperature 

(NEΔT), ε is the error of LSEs and WV is the error of 

the atmospheric WV content. The alg is assessed by [85] 

and NEΔT of  TIRS (@ 280K) is 0.05K for b10 and 0.06K 

for b11[86] which, errors of LST are negligible. The 

studies by [77] reported the RMSE values are below 1 K in 

the SC
Jm&s 

algorithm when WV contents is between 0.5 and 

2 g · cm
−2

. Therefore, the alg is below 1 K since the VW 

contents of the study area is 1.2 for examined dataset 

(Table II). In this paper, the sensitivity analysis is carried 

out on emissivity since emissivity has a serious 

contribution to the error of the LST. In this regard, Ts is 

given by Equation. (17) for emissivity error. 

In the SC algorithm, the atmospheric parameters of the 

study area given in Table II are used. In addition, the mean 

surface temperature is set to 300 K and the mean surface 

emissivity values are computed for band 10 and 11 using 

Table 1. 

2

2

4

1

2

( ) =                    (17)
1

( )
S

sen
sen

s

T

e

e

en

L L
T L

T
e

L

e

k

s

k

 




 



 
    
  







 

 

whereTs is the standard deviation of LST, Tsen is the at-

sensor brightness temperature in K, and e10 is the error of  

LSE. The error of LST in Fig. 14 was obtained considering 

the set parameters in the study area.  

 

 

 

Fig 14. Errors on land surface temperature (Ts) due to the errors 

on the land surface emissivity 

 

 

Theoretically, based on the achieved LSEs the LST 

improvement of the SC algorithm is computed using the 

error propagation theory. The impact of the LSE 

improvement on the LST error using the SC algorithm for 

thermal band 10 and 11 are obtained by Equation. (12). 

Table (III), shows the impact of the LSE improvement on 

the LST for the initial and modified SEBAL-based LSE 

estimation methods.  

It is noteworthy that in the sensitivity analysis only the 

impact of LSE parameter on LST was conducted. As 

shown in Fig.1, two examined LSE of ASTER product is 

located in different part of one scene in LDCM data. Since, 

the first and second LSE of ASTER product located almost 

in the non-vegetated and vegetated area, respectively, the 

effect of LAI parameter is ineffective in LSE estimation. 

As a result, the difference between initial and modified 

SEBAL-based is less. In contrast, in the first scene of 

ASTER product is almost located in vegetated area, the 

impact of the improvement LSE on LST has a noticeable 

difference (Table III). This difference is the result of the 

impact of surface parameters such as moisture, texture, 

canopy of vegetation and so on in the LSE estimation. 
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Table III. The impact of the LSE improvement on the LST based 

on the SC algorithma 

Examined 
Scenes 

Methods  
TIRS 
Bands 

RMSE of 
LSEs ST  

1st scene 

SEBAL 10 1.37 % 1.16 K 

SEBAL 11 1.12 % 1.03 K 

M_SEBAL 10 0.46 % 0.39K 

M_SEBAL 11 0.39 % 0.36K 

2nd scene 

SEBAL 10 0.69 % 0.60K 

SEBAL 11 0.65 % 0.58K 

M_SEBAL 10 0.46 % 0.40K 

M_SEBAL 11 0.43 % 0.39K 

a. Ts, land surface temperature: σTs, root mean square error of Ts 

 

V. CONCLUSION 

In this paper, the effects of SRF and the effective 

wavelength on SEBAL-based LSE estimation method was 

investigated. The 8-14 μm spectral domain of initial 

SEBAL, divided into two very narrowband TIR bands  

(10.60 - 11.19 µm) and (11.50 - 12.51 µm) spectral ranges 

in the LDCM. This study investigates the effects of SRF 

and effective wavelength of two LDCM TIR bands on 

SEBAL-based LSE estimation method. The effectiveness 

of the proposed MLSESEBAL method is empirically 

evaluated over one scene of LDCM data and the LSEs 

achieved by initial and modification methods were 

compared to the LSE product of the ASTER in two cases 

of IBCV and CBCV. The results obtained by IBCV (Fig. 

8a, b, and Fig. 9a, b) showed that in comparison with three 

common LSE estimation methods, the achieved results by 

the MLSESEBAL method demonstrated better performance 

in terms of RMSE on both examined ASTER scenes.  The 

RMSE of LSE obtained by MLSESEBAL method is 1.59% 

and 1.21% in thermal band 10 of the first and second 

examined scenes, respectively. Similarity, for the thermal 

band 11, the error values are 1.56% and 0.98% in the two 

examined ASTER scenes, respectively. Moreover, the 

results (Figures 6 and 7a, b) showed that if there is little 

difference in the effective wavelength between broadband 

and narrowband, the LSE estimation is almost identical to 

the non-vegetated area and there is no significant 

difference, while it is non-negligible in the vegetated area. 

In contrast, if there is a relatively large difference between 

the effective wavelength and SRF between them, areas 

with vegetation and no vegetation have the greatest 

difference and the same performance in LSE estimation. In 

addition, analysis of the results showed that the effect of 

SRF and wavelengths range of thermal bands in the LSE 

estimation in not negligible. On average, there are 0.22% 

and 0.61% improvement between initial and modified 

SEBAL methodology for band 10 and band 11, 

respectively. As previously mentioned a small 

improvement in LSE can influence LST remarkably. In 

addition, the obtained results of CBCV (Fig. 12a, b and 

Fig. 13a, b) showed that in classes that consist density 

vegetation the MLSESEBAL demonstrated almost the better 

performance rather than the compared LSE estimation 

methods. These changes may be the result of the impact of 

environmental parameters such as moisture, texture, the 

canopy of vegetation and SRF, which can be affected on 

the LSE estimation. 

 Moreover, the sensitivity analysis of the SC algorithm 

was performed to solve the problem if the accuracy of LST 

retrieval would be improved after the improving of LSEs 

estimate. The RMSE values of LSE obtained by initial and 

MLSESEBAL methods are 1.37% (for b10) and 1.12% (for 

b 11) which , lead to 1.16 K and 1.03 K errors and 0.46% 

(for b10) and 0.39% (for b 11) that lead to 0.39 K and 0.36 

K errors in the LST retrieval in the first scene, respectively. 

Similarly, for the second scene, the RMSE values are 

0.69% (for b10) and 0.65% (for b 11) which lead to 0.6 K 

and 0.58 K errors and 0.46% (for b10) and 0.43% (for b 

11) which lead to 0.40 K and 0.39 K errors, respectively. 

Since, the first and second LSE of ASTER product located 

almost in the non-vegetated and vegetated area, 

respectively, the effect of LAI parameter is ineffective in 

LSE estimation. As a result, the difference between initial 

and modified SEBAL-based is less. In contrast, in the first 

scene of ASTER product is almost located in vegetated 

area, the impact of the improvement LSE on LST has a 

noticeable difference (Table III). This difference is the 

result of the impact of surface parameters such as moisture, 

texture, canopy of vegetation and so on in the LSE 

estimation. 

   In sum, since LSE is an important intrinsic property of 

the materials its accurate estimation with a greater 

computational cost is valuable. In this regard, according to 

the experimental results, the modified SEBAL-based LSE 

estimation method, MLSESEBAL, yielded a proper 

estimation for two datasets, which demonstrated their 

stability in contrast to the compared methods for LSE 

estimation and LST retrieval. 
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  گسیل پارامتر-دهکیچ

     

مندی سطح مشخصه ذاتی مهم هر جسم بوده و با تغییر پارامترهای فیزیکی سطح تغییر میی ننید و 

همچنین تغییرات آن  وابسته به تابع پاسخ طیفی و طول موج موثر هر باند حرارتی اسیت  الویوریتم تیواان انیرطی سیطح 

(SEBAL) ده است و قادر اسیت متغیرهیای مختلیف    ایر مدل مختلف تشکیل ش 25باشد نه اا یکی اا مدلهای ناربردی می

میکرومتیر     14-8و  میکرومتر  14-3این الووریتم در دو دامنه طیفی  مندی و دمای سطح را محاسبه نند سطح نظیر گسیل

)مشیهور   8میکرومتر در لندست   14-8گیرد  دامنه طیفی حرارتی مورد استفاده قرارمیعنوان باند پهن و باریک هترتیب ببه

 12.51 - 11.50میکرومتیر و   11.19 - 10.60( بیه دو بانید حرارتیی بارییک     LDCM، تداوم اطلاعات لندسیت  تیماموربه 

در دو ، مندی سیطح بهبود و تطبیق روش مبتنی بر سبال در برآورد گسیلهدف اا این تحقیق،  میکرومتر تقسیم شده است 

طیفی و طول موج میوثر بانیدهای حرارتیی  اسیت  نیارایی روش      با در نظر گرفتن اثرات تابع پاسخ   8باند حرارتی لندست 

مندی حاصیل اا آن  بیا دو   اجرا گردید و گسیل 8طور عملی بر روی یک فریم اا تصویر لندست ه( بMLSESEBALپیشنهادی )

 مقایسه و اعتبارسنجی گردید  این مقایسه به دو روش مقایسیه پیکسییل بیه پیکسیل      ASTERمندی فریم محصول گسیل

مندی حاصل اا روش نتایج نشان داد نه گسیل ( انجام گرفت CBCV( و مقایسه مبتنی بر نلاس )IBCVمبتنی بر نل تصویر )

-میی  (RMSEمربع خطیا )  نیانویم شهیرپیشنهادی دارای دقت بیشتری نسبت به روش سبال اولیه با در نظر گرفتن پارامتر 

مندی سطح با روش سبال اولیه و روش پیشنهادی در اولیین  حاصل اا گسیل مربع خطا نیانویم شهیرباشد  در واقع، مقادیر 

 1.03و  1.16ترتیب منجر به خطیای  باشد نه بهمی 00برای باند  %1.12و  01برای باند  %1.37تصویر مورد بررسی، به ترتیب 

  0.36و   0.39بوده نه  منجر بیه خطیای    00برای باند   %0.39، 01برای باند   %0.46درجه نلوین در محاسبه دمای سطح و  

-بیه  مربیع خطیا   نیانویم شهیر، مقادیر در دومین تصویر مورد بررسیطور مشابه، هب  گرددمی  درجه نلوین در دمای سطح

درجیه نلیوین در     0.58و   0.6ترتیب منجیر بیه خطیای    باشد نه بهمی 00برای باند   %0.65و  01برای باند   %0.69ترتیب 

درجیه نلیوین در     0.39و   0.40بوده نه  منجر به خطای  00برای باند   %0.43، 01برای باند   %0.46محاسبه دمای سطح و  

 مندی حاصل اا روش سبال اولیه و روش پیشنهادی نشان میگسیل  دنباشدمای سطح  می

  

دهد نه  در مناطق بدون پوشی  

گیاهی، در صورت اختلاف جزیی در طول موج موثر بین باند حرارتی پهن و باریک، یکسان بوده و اختلاف محسوسیی وجیود 

علاوه بیر آن، روش پیشینهادی بیا سیه     ندارد درحالیکه، در مناطق دارای پوش  گیاهی این اختلاف غیر قابل اغماض است  

طح مقایسه و مورد ارایابی قرار گرفت و نتایج نشان داد نه روش پیشنهادی داری نتایج سااگار و مندی سروش دیور گسیل

 همسو با سه روش دیور دارد 

.روش سبال، روش بهبود یافته سبال، 3مندی سطح، لندست سنجنده استر، گسیل :یدیلن یها واطه

 


