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Abstract— Land Surface Emissivity (LSE) is an important
intrinsic property of materials that is variable through
physical parameters and it is dependent on the Spectral
Response Function (SRF) and the effective wavelength of the
channel. Surface Energy Balance Algorithm for Land
(SEBAL) is one of the most widely applied models, which is
comprised of twenty-five sub-models that calculate different
surface variables such as LSE and LST. This algorithm used
within 3-14 pm and 8-14 pm spectral domain as a broadband
and narrowband, respectively. The 8-14 pm spectral domain
in the Landsat-8 (known as Landsat Data Continuity Mission,
LDCM) divided to two very narrowband thermal infrared
bands (TIR) (10.60 - 11.19 pm) and (11.50 - 12.51 um) spectral
ranges. This study investigates the effects of SRF and effective
wavelength of two LDCM TIR bands on SEBAL-based LSE
estimation method. The effectiveness of the modification
proposed method, M_seSEBAL, is empirically tested over one
scene of LDCM data and the obtained LSEs by initial and
modified methods were compared to the LSE product of the
ASTER as a reference by image-based and class-based cross-
validation. The results showed that the M eSEBAL
demonstrated better performance rather than initial SEBAL
LSE estimation method in term of RMSE. Indeed, the RMSE
values of LSE obtained by initial and modification SEBAL are
1.37% (for b10) and 1.12% (for b 11) which, lead to 1.16 K
and 1.03 K errors and 0.46% (for b10) and 0.39% (for b 11)
which lead to 0.39 K and 0.36 K errors in the LST retrieval in
the first scene, respectively. Similarly, for the second scene,
the RMSE values are 0.69% (for b10) and 0.65% (for b 11)
which lead to 0.6 K and 0.58 K errors and 0.46% (for b10)
and 0.43% (for b 11) which lead to 0.40 K and 0.39 K errors,
respectively. The achieved LSEs of initial SEBAL and
modification methods showed that if there is little difference
in the effective wavelength between broadband and
narrowband, the LSE estimation is almost identical to the
non-vegetated area and there is no significant difference,
while it is non-negligible in the vegetated area. Moreover, the
M seSEBAL compared to three common LSE estimation
methods and the results showed that there are a consistent
result among the compared and modified SEBAL-based LSE
estimation methods.
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I. INTRODUCTION

Land surface emissivity (LSE) is defined as the
"emitting ability" of a natural material, compared to that of
an ideal blackbody at the same temperature [1]. Emissivity
is a measure of the inherent efficiency of the surface to
convert heat energy into radiant energy. There are several
definitions of the emissivity, such as the, e-emissivity, r-
emissivity and the apparent emissivity [2]. The e-
emissivity is defined as the ratio of the total radiation of a
natural object surface to the blackbody radiation by
assuming that there is an identical temperature distribution
with heterogeneous pixels[2]. [3] pointed out that
heterogeneous gray surfaces, do not behave as gray of
surfaces. To handle this problem, apparent emissivity was
proposed to keep the Planck’s function unchanged.
According to the Kirchhoff’s law, [4] defined the r-
emissivity from the hemispherical directional reflectivity.
The r-emissivity definition is based on the Kirchhoff’s law
and applicable for heterogeneous flat surfaces. Since, the r-
emissivity is measured from space; it is used for LSE
retrieval from space-based measurements. Because
different composition of surface objects is always
combined in one single pixel, the emissivity is complicated
to estimate. Satellite-based emissivity estimates depend
largely on the composition, roughness and other physical
parameters of the surface, such as its moisture content [5].
LSE is not only a basic parameter for land surface
temperature (LST) retrieval, but also a vital parameter to
measure the thermal infrared radiation of objects [6]. LSE
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provides useful information for geological and
environmental studies, mineral mapping and it is one of the
important input parameters for climate, hydrological,
ecological and biological models [7, 8]. Several methods
exist to estimate spectral emissivity from satellite data,
which apply the Visible and Near-Infrared (VNIR) or
Thermal Infrared (TIR) spectral regions or both of them
[2]. According to the way by which the LSE is determined
along with LST, the emissivity estimation methods of
optical remote sensing data can be categorized into three
distinct types [2].

The first group is a stepwise retrieval method that
determines the LSE and the LST separately. Representative
methods of this group include the NDVI Based Emissivity
Method (NBEM) [9, 10], Surface Energy Balance
Algorithm for Land (SEBAL) [11], the Classification-
Based Emissivity Method (CBEM) [12, 13], and so forth.
The second group of algorithms retrieve simultaneous both
LSE and LST with known atmospheric information from
at-surface radiance, based on some assumptions or
constraints. The representative methods of this group
consist of the physics-based day/night operational method
[14],normalized emissivity method (NEM) [15], adjusted
normalized emissivity method (ANEM) [16, 17], surface
reflectance signature classification (SRSC) [18],the
reference channel method (RCM) [19], temperature
emissivity separation (TES) method [20], gray body
emissivity method (GBEM) [21], and so on. The third
group simultaneously retrieves the atmospheric profiles
along with both LST and LSE. The representatives of this
group are the artificial neural network (ANN) method [22]
and the two-step physical retrieval method [23] which are
mostly used for thermal hyperspectral imaging.

As described, various LSE estimation methods have
been proposed with the same aims and conditions of
various applications, benefits, and limitations [2]. The
emissivity of natural surfaces may vary significantly due to
differences in soil structure, soil composition, organic
matter, moisture content and differences in vegetation
cover characteristics. LSE is also a function of the wave
bandwidth [24]. Broadband thermal emissivity has been
shown to vary considerably from narrowband values for the
same surface [25]. Broadband emissivity, especially in the
8-14 m region, is also susceptible to the effects of
atmospheric water vapour [10]. Also, the dynamic range of
emissivities of contrasting surfaces is greater in the
broadband than in the narrowband, and may result in a
greater potential for error in surface temperature
calculations [24]. Moreover, a few studies have shown that
an error of 1 % in the LSE can lead to an error in the LST
ranging from 1 K to 2 K in LST using single channel (SC)
algorithm around 10 microns [2]. Thus, a small
improvement in LSE can influence LST remarkably. The
studies by [26] showed that the use of the broadband
emissivity in one channel instead of the narrowband
emissivity may result in large errors on the calculated
surface parameters. On the other hand, there are few
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spectral measurements available beyond 14.0 pm for
natural objects because of the limitation of the measured
instruments and the strong atmospheric absorption in the
longwave TIR region [26]. In addition, there are also very
narrow spectral channels in the atmospheric windows for
satellite sensors. Now the question arises: which spectral
domain’s emissivity can best representative of the
narrowband and broadband emissivity in the completely
electromagnetic region for the calculation of the Earth
emitted radiant flux and surface parameters. The splitting
of the electromagnetic spectra into several spectral domains
and computing the contribution of each spectral domain to
the overall value of the Earth emitted radiant flux can be
considered as a suitable approach [27].

SEBAL is one of the most widely applied remotely
sensed surface energy balance models which is comprised
of twenty-five computational sub-models that calculate
surface variables such as evapotranspiration (ET), LSE,
LST and other energy exchange at the earth’s surface [28].
The broadband surface emissivity is an important
parameter for estimating the longwave surface energy in
SEBAL methodology. The broadband emissivity can vary
significantly, because the spectral emissivity ranges from
0.7 to 1.0 for bare soils and rocks in the 8-12 um range.
Two surface emissivities are used in the SEBAL algorithm.
The first is an emissivity representing the surface behavior
for thermal emission expressed as eyg. The second is an
emissivity representing the surface behavior for thermal
emission in the broad thermal spectrum (6 to 14 pm),
expressed as gg. eng IS used in the calculation of LST and
g0 IS used later on to calculate total long wave radiation
emission from the surface [29, 30]. As defined by Reuter,
Richardson [31], the two spectral channels of LDCM,
centered near 10.9 and 12 microns, essentially double
sample the single thermal band in the heritage TM/ETM+
systems. The bandwidths of LDCM in TIR region are
narrower than of ETM+ and other broad band sensors that
is used in SEBAL algorithm. Broadband emissivity is
insensitive to surface temperature, for common surface
temperatures [32], while narrow-bands emissivity are
sensitive to LST and should be considered. This results in
different responses from the surface, which in turn may
alter the surface emissivity and temperature.

This study focuses on estimating the relationship
between broadband and narrowband emissivity from the
emissivities derived from the two LDCM thermal channels.
On the other hand, this research investigates the effects of
SRF and the effective wavelength on SEBAL-based LSE
estimation method. In this paper, a modified SEBAL-based
LSE estimate method, M_se-SEBAL, is adopted according
to SRF of two narrow thermal bands of LDCM and is
modified rather than initial LSE on broadband estimation.
This paper is organized as follows: In the introduction
section, a brief description of the most common LSE
estimation methods, as well as the objectives of this
research is presented. In the sections, 2 and 3, after the
presentation of data sets, pre-processing data are
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implemented. In section 4, the proposed methodology is
explained in detail. In section 5, the results of the methods
and experiments are analyzed and the final section,
conclusions are given.

The study area is an arid and semi-arid region, which is
situated in the southern part of Iran. This area has various
climate types with a diverse land cover including mixed
pixels covered by different vegetation, soil, and rocky
terrain types. It lies between latitudes 26° 25'-32° 44'N and
longitudes 50° 32'-55° 54'E. The land use data, including
seventeen classes provided by the ministry of Jihad and
agriculture and one scene of LDCM data, Level 1T,
captured on 14 June 2013 are shown in Fig. 1. Recently,
the United States Geological Survey (USGS) on January
29, 2014, updated calibration parameters and Geometric
alignment between the Operational Land Imager (OLI) and
Thermal Infrared Sensor (TIRS) sensors of LDCM and
changed the relative gains in the Calibration Parameter File
(CPF) since launch. Therefore, USGS reprocessing scenes
for on-demand product orders. In our research, LDCM
data, Level 1T, captured on 23 June 2013 (and reprocessed
by USGS based on calibration improvement parameters.
(http://landsat.usgs.gov/calibration_notices.php).

STUDY AREA AND DATASETS

Classes
Rocky terrain

SP30E B
55°30'E

50°30'E
52°30'E

55°0'E

@

Projection: Lat  Long 7T 171 ‘
Datum:wes-g4 UMM 0km  0km

[[] 1st and 2nd scenes of LSE product of ASTER
[ scene of LDCM

Fig 1. The study area, land use data, Location of LDCM data and
LSE product of ASTER that used in the study (provided by the
ministry of Jihad and agriculture of Fars province).

It is worth noting that LDCM datasets used in this study
were ordered to be reprocessed by USGS based on
calibration improvement parameters. Indeed, the United
States Geological Survey (USGS) on January 29, 2014,
updated calibration parameters and Geometric alignment
between the OLI and TIRS sensors of LDCM and changed
the relative gains in the Calibration Parameter File (CPF)
since launch. Therefore, USGS reprocessing scenes for on-
demand product orders. In our research, LDCM data, Level
1T, captured on 23 June 2013 (and reprocessed by USGS
based on calibration improvement parameters.
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(http://landsat.usgs.gov/calibration_notices.php). In this
research, apart from the LDCM data, two scenes of the
LSE standard product of Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) for LSE
validation, was used. To evaluate all LSEs estimate
methods (i.e. Modified and three compared LSE estimation
methods), two LSEs standard products of ASTER as a
reference was used for all methods. This product is
generated from the ground surface emissivity (2B01T) data
on 19 April 2013. The spatial resolution of this product is
90 m and was yielded by temperature emissivity separation
(TES) algorithm. Based on numerical simulation, TES can
recover LST within about +1.5 K, and LSE within about
+0.015[20]. The [33] points out that the LSEs estimate by
the ASTER TES algorithm is usually in qualitative
agreement with field or laboratory measurements.
Therefore, the estimated LSEs achieved by all methods are
compared with this product for the whole image in terms of
root mean square error (RMSE) measure in corresponding
thermal bands.

I1l. CHANNEL EMISSIVITY AND DATA PRE-

PROCESSING
A. Channel emissivity

Similar to channel radiance, channel emissivity can be
defined by convolving spectral emissivity with the
normalized channel response function. Ideally, the
convolution should also include the temperature
dependency via the Planck's function, B,(Ts), for black
body emission. By definition, the channel emissivity (g;)
for a specified sensor is given by [1, 34, 35]:

2
[ &) Ri(2) B,(Ty)d2
%

%
[R(B,T)d2
A

@

Where L denotes wavelength, B;(Ts) is the Planck's
function for black body emission, Ri(A) is the normalized
spectral response function (SRF) of the sensor in channel i
and €()) is the spectral emissivity for various surfaces can
be obtained by field or laboratory measurements, A; and A,
are referred to the lower and upper wavelength for the
corresponded spectral domain. Although in Equation (1), &;
depends on LST, however, in a terrestrial temperature
range, LSE is almost independent of LST [36], and so the
variation of &; with LST is negligible (Ae=10"). Therefore,
the channel emissivity can be expressed as Equation. (2).
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The main problem in determining emissivity from Equation
(2) is the observation of emissivity of natural surfaces at
satellite spectral and spatial resolutions [1]. LSEs and
specially LST can vary due to shadowing effects and
topographic effects [37]. Therefore, it is necessary that
atmospheric correction, shadow removal and topographic
correction apply to the data. As can be seen in Equation (2)
and (3), LSE is depending on the effective wavelength of
the thermal band and SRF of sensors. Figure 2, shows a
comparison of the TIRS spectral bandwidths of LDCM
with the previous Landsat thermal channel (ETM™).

SRF LDCM vs. ETM+
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Fig. 2. Comparison of the relative spectral response of the LDCM

TIRS thermal channels with the previous Landsat instrument (ETM")
(SRF data from USGS).

According to researchers [38, 39], the effective
wavelength is defined by the following equation:

Jy
[AR(2) d2
A =2 )

A
jRi(/l) dA
A

Where, R is the normalized SRF of the thermal band,
which is given with discrete pattern and in finite range.
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Consequently, estimating the effective wavelength is an
issue that is how to tackle the discrete integration properly,
which is also called ‘numerical integration’. More
explanation and the calculation methods of effective
wavelength is provided by [38]. The effective wavelengths
of TIRS/LDCM are 10.9036 pm and 12.0030 pum for bands
10 and 11, respectively[40]. In addition, it is 11.256 pum for
thermal band 6 of ETM*[41].

In this study, the ASTER spectral library (v2.0), ranging
from 0.4 to 14 um is used for the spectral emissivity of
classes in thermal (10.60 - 11.19 pm) and (11.50 - 12.51
pm) spectral ranges from Kirchhoff’s law (Emissivity=1-
Reflectance). This library was measured in directional
hemispherical reflectance under most conditions that the
infrared portion of these data can be used to calculate
emissivity using Kirchhoff's Law, which has been verified
by both laboratory and field measurements [42, 43].

This library includes data from three other spectral
libraries: the Johns Hopkins University (JHU), the Jet
Propulsion Laboratory (JPL), and the United States
Geological Survey (USGS) Spectral Library [44, 45]. Then,
the spectral emissivity of each spectrum is computed by
Kirchhoff’s law in the thermal range of TIRS on LDCM.
On the other hand, we simulated TIRS/LDCM channel
emissivities of band 10 and 11 using Equation (2) from the
ASTER spectral library for all the samples of rocks, soils,
vegetation, water and so on. The obtained emissivities of
seventeen classes along with their standard deviations in
TIRS bands of LDCM are given in Table I. At first, main
classes such as forest, grasslands, rocky, water, soil,
vegetation, dry vegetation and mineral are obtained from
the ASTER spectral library by Equation. (2). Moreover, the
emissivity values of two classes ( woodlands-shrubbery
and saline soils-salt) are obtained from [46]. Then, the
emissivity values for combined classes experimentally set
as follows (Table I). It is noteworthy that emissivity values
of combined classes only was used for classification based
emissivity method (CBEM) in this study.

The choice of a typical emissivity value for some surface
objects such as soil is a more critical question, because the
variability of emissivity values for soils is more than
vegetation and other ones [47]. In order to estimate the
emissivity of a given class, initially the ¢, of a set of similar
classes (e.g. 113 spectral emissivities was chosen for soils
class) are selected from the ASTER spectral library.
Therefore, the mean value of spectral emissivities is
considered for the emissivity of each class. After
calculating the emissivities for the classes, radiometric
correction was conducted, the emissivities of the LDCM
data through three compared, and one modified proposed
LSE estimation methods were determined.
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Table I.Emissivities of classes in band 10 and 11 of LDCM data

Class source of emissivity value %10 ®510 €11 o1
Dense Forest ASTER spectral library 0.9817 0.0080 0.9842 0.0095
Semi-dense forest (Emis_soil + Emis_ forest)/2 0.9787 0.0071 0.9821 0.0079
Low-dense forest (2*Emis_soil + Emis_ forest)/3 0.9757 0.0061 0.9800 0.0063
Irrigated cropland and gardens (Emis_water + Emis_soil +Emis_ forest)/3 0.9863 0.0080 0.9852 0.0095
Dense Grasslands ASTER spectral library 0.9833 0.0080 0.9886 0.0095
Semi-dense Grasslands (Emis_soil + Emis_ Grasslands)/2 0.9799 0.0040 0.9854 0.0033
Low-dense Grasslands (2*Emis_soil + Emis_ Grasslands)/3 0.9765 0.0066 0.9821 0.0071
Rocky terrain ASTER spectral library 0.9613 0.0129 0.9544 0.0094
Rain fed cropland and gardens (Emis_Veg + Emis_soil +Emis_ forest)/3 0.9757 0.0041 0.9800 0.0051
Everglade Lands (Emis_water + Emis_ forest)/2 0.9871 0.0041 0.9852 0.0051
Woodlands and shrubbery From Reference [46] 0.9700 0.0051 0.9770 0.0047
Residential areas and urban ASTER spectral library 0.9479 0.0151 0.9541 0.0149
Forest planting ASTER spectral library 0.9787 0.0059 0.9822 0.0047
Swamp (Emis_Veg + Emis_dry.veg + Emis_water)/3 0.9752 0.0048 0.9772 0.0075
Saline soils and salt From Reference [46] 0.9650 0.0041 0.9710 0.0031
Water areas ASTER spectral library 0.9909 0.0001 0.9861 0.0007
Riverbed (Emis_water + Emis_ mineral)/2 0.9657 0.0027 0.9759 0.0021

a, channel emissivity: b, standard deviation of the channel emissivity

B. Data pre-processing

Obviously, in order to use satellite-imaging data for
quantitative remote sensing of land surfaces, the
atmospheric and topographic effects must be removed. An
effective removal of atmospheric and topographic effects
on remote-sensing imagery is an essential pre-processing
step for deriving a good estimate of physical parameters of
the earth's surface, i.e. surface spectral reflectance,
emissivity and temperature. The various techniques that
remove these effects have been proposed and consist of
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specific combinations of an atmospheric and a topographic
correction  method. Atmospheric  and  Topographic
Correction (ATCOR) is amethodused to eliminate
atmospheric and illumination effects on satellite imagery.
In this study, ATCOR23, independent interactive data
language (IDL) programming based on MODRAN-4, is
used for atmospheric correction of rugged terrain by
integrating ASTER digital elevation model (DEM).



Modification and Adaptation of SEBAL-Based LSE Estimation Method for LDCM Data..............

wever......Emami et al.

Elevation (m)

OII(m

50km . 100km HF Projection:UTM,

Datum: WGS-84
Zone 39N

Figure 3. DEM and its derivatives in a part of the image: (a) DEM (b) slope, (c) slope, (c) sky view.

Then, using the ATCOR23, topography and atmospheric
correction were performed over the LDCM image.
ATCOR23 has two separate options: ATCOR 2 and
ATCOR3. ATCOR 2 is used for atmospheric correction in
the flat area and ATCORS3 includes all of the capabilities of
ATCOR2 and can be integrated with a DEM for
atmospheric correction of images depicting rugged
terrain[18]. It employs a large high-resolution atmospheric
database, compiled using the “MODerate spectral
resolution atmospheric TRANSmittance algorithm and
computer model” (MODRAN) code employing DISORT,
8stream option (DIScrete Ordinate Radiance Transfer) for
computing multiple scattering components of the total path
radiance [18, 48]. In this study, sensor and image

information (such as solar and the sensor zenith angle at the
(a)

Okm _
Projection: UTM, Zone 39N Datum: WGS-84 jﬁ—

T T T 1
25km  50km  75km  100km

time of data acquisition, azimuth angle of solar and sensor,
the date and time of image acquisition, pixel size,
calibration file include gain /offset of bands and etc.) from
metafile of images were introduced to ATCOR. In addition,
it uses the algorithm dark dense vegetation (DDV) to
estimate the atmospheric optical thickness or visibility [18,
49]. Moreover, atmospheric and aerosol model based on
the longitude of the study area and date and time of image
acquisition was determined and were introduced to
ATCOR. Figure 4 shows these corrections on the part of
the image. It is noteworthy that sky-view factor can be used
as a general relief visualization technique to show relief
characteristics. In particular, this visualization is a very
useful tool in the recognition of small scale features from
high-resolution DEMs [50].

I I I 1 1
Okm  25km  50km  75km  100km
Projection: UTM, Zone 39N Datum: WGS-84

Fig. 4. Topographic and atmospheric correction are shown in the partly of the images: (a) original image, (b) corrected image.
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IV. THE MODIFICATION OF SEBAL
METHOLOGY

The SEBAL was provided by [11] which uses spectral
radiances, together with weather and climate data, to solve
the energy balance Equation at the earth's surface. Several
common vegetation indices are used in the SEBAL
method. Normalized Difference Vegetation Index (NDVI),
Modified Soil Adjusted Vegetation Index (MSAVI),
Weighted Difference Vegetation Index (WDVI), and Leaf
Area Index (LAI) indices are computed using the
reflectance values. Indeed, NBEM and SEBAL are
vegetation-based LSE estimation methods. The NBEM use
only one vegetation index (NDVI), while SEBAL utilizes
several vegetation indices (SAVI, NDVI, and LAI). The
various studies [51-53] stated that the aim of using the
several vegetation indices is minimized soil background
and brightness effects on LAI. In this study area, pixels
usually contain a mix of vegetation and soil context.
SEBAL and twenty-five their computational sub-models
calculate different surface variables [28]. Many studies
have been used to compute LSE from the SEBAL method
[30, 54].0ne of the sub-model of this algorithm is for LSE
estimation in the wider broadband that shown in Equation

(4).

% =0.97+0.0033 LAl ; (NDVI>0 & LAI<3)
% =0.98 ; (NDVI >0 & LAI > 3)
8 =0.99 ; (NDVI<0)

4)

SEBAL algorithm not only has been used for different
data from satellite remote sensing with wide broadband (3-
14 um), but also it is used in calculating the LSE and LST
in the relatively wide broadband (8-14 pm) spectral range.
The Landsat 8 satellite (LDCM) with two thermal infrared
bands provided another opportunity for the estimation of
LSE and LST. In the LDCM, the (8-14 pum) spectral range
divided into the narrow ranges of thermal bands. Therefore,
the use of the primary SEBAL algorithm is not true and
causes errors in LSE and LST estimation. Therefore, this
algorithm should be modified and corrected rather than to
narrow thermal bands of LDCM. It is worthy to note that
the LAI in Equation (4), is computed through MSAVI
using the empirical equation proposed by [55].

In this research, the implementation of the modified LSE
estimation methodology, M se-SEBAL, consists of four
steps as in the following flowchart in order to improve the
LSE estimates for the LST retrieval (Fig. 5).
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Fig. 5.The flowchart of proposed methodology in this study

In the first step, the initial values of emissivities have
been calculated for all land use classes using the ASTER
spectral library as aforementioned and data pre-processing
including atmospheric and topographic correction were
conducted. In the second step, modification SEBAL-
based and three other compared LSE estimation methods
were applied based on TIR bands of LDCM. These
methods include (i) NBEM, (ii) M_seSEBAL, (iii) CBEM,
and (iv) ANEM. In the third step, for LSE validation, the
LSEs obtained by M eSEBAL proposed and three
individual methods were compared with earth surface
emissivity (2B04) standard product of Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER). In the final step, the results of the methods and
experiments are analyzed and conclusions are given.

Two emissivities are used in initial SEBAL algorithm
which the first emissivity represents the surface behaviour
for thermal emission in long wave infrared (LWIR)(8-
14um) that expressed as eng, and the second emissivity
represents the surface behaviour for thermal emission in the
broad thermal spectrum (3-14 um) is used to estimate the
net longwave radiation. In this research focused on this
emissivity. The first emissivity is used in the calculation of
the LST. To this end, g\g for the according to their SRF of
TIR bands of LDCM has been modified by using the
ASTER spectral library. The spectra of rocks, soils,
vegetation, water, so on, which are essential components of
the terrestrial ecosystem, are collected in this study. In total
257 spectral samples from the ASTER Spectral library are
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used to develop our modification method. The ASTER Xis1)
library contains directional hemispherical spectral J' g,B,(T)dA
reflectance; therefore, we converted to spectral emissivity PR () @
using Kirchhoff’s law. In the current study, according to b A
the SRF of two very narrow TIR bands of LDCM, (10.60 - _[ B,(T)dA
11.19 pm) and (11.50 - 12.51 pm) spectral ranges , the A(i)
emissivity, exg, Were yield as Equations (5).
;L(i+1)
&I =0.969781+0.004100 LAI [ B.(Mda
e ; (NDVI>0& LAI<3) _ A0 .
éxs. =0.976116+0.003106 LAI G =— ®)
TS =0.98173200 J B,(T)d4
0 1

: (NDVI>0 & LAI > 3) (5)

TIRS _0.98425133
£ =0.99085700
: (NDVI<0)
NBy;

&,
Eney
NB;o
& =0.98985167
with assuming the spectral response is rectangle, the
broadband emissivity can also be written by [34]

A
jg(z) R/ (1) dA
_ A

g =

= _ (6)
jRi(/l) da '
A

With

Equation 6 shows that the broadband emissivity is
linearly related to the narrowband channel emissivities with
coefficients g;nearly independent on the surface
temperature [34]. Therefore, other researchers also linear
formula implanted between broadband and narrow bands
emissivities [26, 56]. According to this, in this study, we
have assumed a linear relationship between the broadband
and narrow bands (i.e. initial SEBAL-based LSE
estimation method and modification M eSEBAL
methodology) emissivities.

gNarrowBand +C

11
BroadBand _
€ - Z ach & ®)

ch=10

We calibrated the linear regression using the ASTER
spectral Library. The calibrated coefficients were a;p—ay; as
0.8049, and 1.2733E-11, respectively, and c as 0.1894. The
RMSE in calibration and validation of Equation. (9) were
1.5692E-13.

Comparsion of initial and modified SEBAL method for band 10 and band 11 separately
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Fig. 6. Comparison of initial and modified SEBAL method for band 10 and 11 of LDCM.
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Fig. 7. Comparison of initial and modification SEBAL method in the vegetated and non-vegetated areas, (a) for band 10 of LDCM, (b) for
band 11 of LDCM

By comparing achieved LSEs of initial SEBAL-based
and modified methods in the Figures 6 and 7a, b, it can be
seen the effects of SRF, effective wavelengths, physical
and vegetation of earth’ surface parameters in the LSE
estimation by SEBAL algorithm. Effective wavelength is
relatively close together in the initial and band 10 of
modified SEBAL method. Therefore, the LSE estimation in
the non-vegetated area is almost identical and there is no
significant difference, while it is different in the vegetated
area. The difference between vegetated areas and non-
vegetated areas can be easily seen from LAI index. These
changes are the result of the impact of environmental
parameters such as moisture, texture, the canopy of
vegetation and SRF, which can be affected on the LSE
estimation. Moreover, by comparison, achieved LSEs of
primary SEBAL-based and band 11 of M ssSEBAL
methods in the Figures 6 and 7a, b, it can be seen that there
is a relatively large difference in the effective wavelength
and SRF between them. In this case, areas with vegetation
and no vegetation have the same performance and the
greatest difference in LSE estimation. On average, there are
0.22% and 0.61% improvement between initial and
modified SEBAL methodology for band 10 and band 11,
respectively.

As previously mentioned, a few studies have shown that
an error of 1 % in the LSE can lead to an error in the LST
ranging from 1 K to 2 K in LST using single channel (SC)
algorithm around 10 microns [2]. Thus, a small
improvement in LSE can influence LST remarkably.
Although broadband emissivity varies greatly with
location, especially in non-vegetated area, while
narrowband emissivity has tangible variation in the areas
with dense vegetation. These changes can be the effects of
SRF and effective wavelengths in the impact of
environmental parameters for LSE estimation.
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A. LSE Comparison and Validation

In this part, for comparison and validation of the
proposed M_seSEBAL method, other three common LSE
estimation methods, including (i) NBEM, (ii) CBEM, (iii)
ANEM were implemented as follows.

1) NDVI Based Emissivity Method (NBEM)

Different approaches have been used to predict LSE
from NDVI values [9, 10, 57-61]. Fully vegetated areas are
approximate blackbodies and the emissivity spectrum is
nearly constant and near unity. Therefore, estimating the
emissivity spectrum of these types of surface is less
important than for surfaces of soils or rock. In fact, the
NDVI approach assumes a constant value of emissivity for
these areas. In the over particular areas, NDVly, and
NDVl,; values can be extracted from the NDVI histogram
that was proposed by Sobrino, Jiménez-Mufioz [9]. For
those pixels composed of soil and vegetation (mixed pixels,
NDVIsoil <NDVI< NDVlyg), the method uses the
following simplified Equation (10).

g)“- (mix ) :‘9/11» (veg)'pv +‘9/11» (soil)(l_ pv )+C},i ; I 1’2 (10)

Where &,y and ey are the soil and vegetation
emissivities, respectively. i refers to two thermal bands of
TIRS sensor of LDCM, Py, is the proportion of vegetation
(also referred to as fractional vegetation cover, FVC), and
C is a term which takes into account the cavity effect due to
surface roughness. Using the geometrical model proposed
by the [9], the cavity term for a mixed area and near-nadir
view is given by:

C, 2(1_‘941@0"))"%(veg)':'-(l_R/) ; 1=12 (11)

Where F' is a geometrical factor ranging from zero to one,
depending on the geometrical distribution of the surface

[62]. Since F' cannot be estimated from VNIR/TIR data, a
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mean value is chosen. Moreover, Py values are obtained
from the NDVI according to Equation (12) [63].

| T

In this study, NBEM proposed by [9] was used.

NDVI — NDVI
NDVI,,, — NDVI

v

(12)

soil

). eg) P +3M50”)(1— pv)+C/L NDVI;, < NDVI<NDVI,,,

€5, (soily? NDVI<NDVI,
g, = _
A £, (veg)? NDVI > NDVI,,, i=1,2 (13)
&€, (water) masked water area

The water body areas in each scene masked and their
emissivities were assigned independently. In other areas,
NDVlye, and NDVlg; were determined by the NDVI
histogram and the NDV I, and NDV .4 values were set to
0.20 and 0.50, respectively.

2) Classification Based Emissivity Method (CBEM)

Generally, CBEM uses conventional land cover data.
This method assumes that similarly, classified land covers
types exhibit very similar LSEs [1, 12, 13, 64, 65]. DEM-
based topographic corrections on satellite imagery from
rugged terrain, as effective processing techniques to
improve the accuracy of Land Use/Land Cover (LULC)
classification as well as land surface parameter retrievals
with remotely sensed data [66]. As is widely known, the
pixel-based image classification approach classifies remote
sensing images according to the spectral information in the
image ‘pixel by pixel’. In this study, atmospheric and
topographic corrected image was classified using a
Maximum Likelihood Classification (MLC) algorithm. The
authors are aware of some limitations to the ‘per pixel
approach’ [67], but in this case the MLC produced very
satisfactory results. Then, the obtained initial emissivities
from Table | assign to each pixel according to its class
label. The overall accuracy (OA) of classified image is
about 91.21 %.

3) Adjusted Normalization Emissivity Method (ANEM)

This Normalization Emissivity Method (NEM) assumes
a constant emissivity in all channels for a given pixel,
provided that the atmospheric effects are corrected [17]. In
the adjusted NEM (ANEM) the assigned emissivity is
surface cover dependent [18]. The ANEM is based on
the combination of the vegetation cover method (VCM)
and the Normalized Emissivity Method (NEM). This
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method uses of the VI and NIR data to estimate the
vegetation cover and assigned the maximum emissivity
based on VCM. ANEM, instead of using a fixed value of
emissivity, sets the initial value of emissivity regarding the
spatial variation of emissivity with VCM. Estimating
channel emissivities in a pixel-by-pixel way can be done by
VCM, using coefficients fit in each band. In this study,
ANEM is implemented based on the mathematical
structure proposed by [16] and [68]. For each channel, the
maximum emissivities from the ASTER spectral library are
assigned to class emissivities according to SRF of TIRS
/LDCM.

B. LSE Validation
1) Image-Based Cross-Validation (IBCV)

There are two procedures to validate the LSE values
retrieved from space [59, 69]. The first, known as the direct
method, directly compares the ground-based measurements
with satellite-derived products. The second, known as the
indirect method, indirectly validates the non-validated
product with the various satellite-derived products, model
simulations, or other information and applications. The
studies by [33] points out that the LSEs estimate by the
ASTER TES algorithm is usually in qualitative agreement
with field or laboratory measurements. In the current study,
indirect method of LSE is used and the achieved LSEs of
bands 10 and 11 in the LDCM data were compared with
the corresponding LSE standard product of ASTER (i.e.
bands 13 and 14) in the whole image that is known to
Image-Based Cross-Validation (IBCV). To evaluate and
validation of all LSE estimation methods (i.e. three
common compared and modified proposed methods), two
LSE standard products of ASTER were used as a reference
for all methods. This product was generated from the
ground surface emissivity (2B01T) data on 19 April 2013.
Moreover, the spatial resolution of this product is 90m and
was obtained by the TES process.

Therefore, the achieved LSEs by the three compared
along with M seSEBAL LSE estimation methods are
compared to each other with corresponding thermal bands
of the ASTER product for the whole image in terms of
RMSE. The obtained results of IBCV are shown in Fig. 8a,
b, and Fig. 9a, b, in the first and second scenes of ASTER,
respectively.

The same calculation is performed on the second scene
of ASTER product and the results for RMSE measure are
given in Fig. 9a, and b.
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Fig. 9. IBCV comparison of LSEs of bands 10 and 11 in the LDCM data for compared and proposed methods in the second examined scene.

(a) RMSE of LSEs for band 10, (b) RMSE of LSEs for band 11.

As illustrated in Fig. 8a, b, and Fig. 9a, b, the results of
the three common compared methods are worse than the
result obtained by the M, seSEBAL proposed method.
Moreover, in M_eSEBAL method almost displayed
appropriate performance in term of RMSE measure. The
results show that the RMSE of LSE obtained by
M_seSEBAL method is 1.59% and 1.21% in thermal band
10 of the first and second examined scenes, respectively.
Moreover, for the thermal band 11, the error values of
M_seSEBAL method are 1.56% and 0.98% in the two
examined scenes, respectively. Generally, the experimental
results demonstrated that the M eSEBAL perform
significantly better than the compared methods for LSE
estimation. Moreover, We conducted the LSE validation,
on the whole image in initial and modified SEBAL-based
LSE estimation in comparison with two scenes the LSE
product of ASTER in term of RMSE measures, and the
results were given in Fig. 10a, b, ¢, d and Fig. 11a, b, c, d,
in the first and second scenes of ASTER, respectively.
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As illustrated in Fig. 10a, b, ¢, d and Fig. 11a, b, c, d the
results of the modified SEBAL-based LSE estimation
method is better than the result obtained by the initial
SEBAL method in term of RMSE measure.

2) Class-Based Cross-Validation (CBCV)

To investigate the effects of surface parameters on LSE
estimation by three compared and M seSEBALmethods, an
assessment was conducted in each class. In this regard, the
CBCV was performed on the available classes based on
land use data in the corresponding thermal bands of the
LDCM and ASTER data. The results are shown in Fig.
12a, b, and Fig. 13a, b in term of RMSE.
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Fig. 10. Cross-comparison of the initial and modified SEBAL-based LSE estimation methods in the first examined scene. (a) and (b) Error
emissivity of initial SEBAL method for band 10, and band 11, respectively, (c) and (d) Error emissivity of M seSEBAL for band 10 and

band 11, respectively.
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band 10 and band 11, respectively.
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(a) CBCV of LSEs in the three compared and M_SEBAL methods in
comparison with the 1st scene of ASTER (B10 vs. B13)
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Fig. 12. CBCV of the three compared and modified SEBAL-based
LSE estimation methods in comparison of the first examined scene
of ASTER in term of RMSE. (a) Error emissivity for band 10, (b)
Error emissivity for band 11.

Fig. 12a and b show the comparison results of compared
and modified methods in each class in terms of RMSE for
bands 10 and 11, respectively. The same calculation was
performed on the second ASTER scene and the results are
given in terms of RMSE in Fig. 13a and b for bands 10 and
11, respectively.

(a) CBCV of LSEs in the three compared and M_SEBAL methods in
comparison with the 2nd scene of ASTER (B10 vs. B13)
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Fig. 13. CBCV of the three compared and modified SEBAL-based
LSE estimation methods in comparison of the second examined
scene of ASTER. (a) Error emissivity for band 10 in term of RMSE,
(b) Error emissivity for band 11 in term of RMSE.

There are a consistent result among the compared and
modified SEBAL-based LSE estimation methods in non-
vegetation classes like L class or classes which, consist of
lower vegetation density and high fraction soil such as F3,
R3 and URB classes. In contrast, the obtained results of
CBCV (Fig. 12a, b and Fig. 13a, b) showed that in classes
that consist density vegetation the M, seSEBAL and NBEM
demonstrated almost the same results and better
performance rather than ANEM and CBEM methods.
These changes are the result of the impact of
environmental parameters such as moisture, texture,
canopy of vegetation and SRF, which can be effect on the
LSE estimation.
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3) The Sensitivity Analysis of LSE Improvement on LST

Having LSEs, the LST can be retrieved by different
methods. There are many LST retrieval methods for
Landsat data in the literature [70-74]. Landsat 4 and 5, and
following by Landsat 7, there was only one thermal
infrared channel available [75, 76]. Therefore, a single-
channel (SC) algorithm was developed to derive LST from
this band. Influential researchers were conducted mainly by
[39, 47, 77] and [78]. In [47] three famous SC
algorithms, (i) the radiative transfer equation, (ii) Qin et
al.’s algorithm, and (iii) Jimenez-Munoz and Sobrino’s
(SC™&) algorithm, to retrieve the LST from the single
thermal band are compared. The SC™&® algorithm shows a
good performance for water vapor content values between
0.5 and 2 g-cm 2, with RMSE values below 1 K [77]. In
contrast to previous Landsat satellites, the TIRS of LDCM
data contains two thermal channels, which split-window
(SW) and SC algorithms are capable of utilizing for LST
retrieval [79]. Considering the strip problem, ghost signal
caused by stray light and a time-varying absolute
calibration error for TIRS, the validation exercise is still a
tough problem [80]. Therefore, based on the USGS
recommendation on the LDCM data, the SC algorithm of
[39] is used. To this end, to evaluate the impact of the LSE
improvement on LST, the SC"™S algorithm of [39] is used.
SC algorithm is utilized for sensitivity analysis using only
band 10. Therefore, the o 44 is below 1 K since the VW
content of the study area is 1.2 for the examined dataset
(Table I1). The SC™&® algorithm retrieves LST (Ts) using
the general Equation (14).

1

——+%{H I SCANETATAL

(T,

sen

_yLsen) (14)

where L, is the at-sensor radiance in w m? sr* pm?,
Teen IS the at-sensor brightness temperature in K, A is the
effective wavelength in um, k; and k, are constant of
thermal bands in W m? st pm™ and K, respectively. € is
the surface emissivity and unitless, vy, y,, and 3 are
referred to as atmospheric functions (AFs) which computed
by Equation (15) [79].

LT

T

1 @as)
T

Vi=— l//2=—L~L— ‘//3:L‘L

Where LT is the upwelling radiation and L is the
downwelling radiation in w m? sr* pm™ and t is unitless
and atmospheric transmittance.
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Table I1.Atmospheric parameters for LDCM? Ly L
or T;nx(LM—MJ
Scene T L' LY WV o =(L2) e,= LT xe 17
* " o¢ 2 y3 ‘
k, x L, x & x(—+-%)
162-40 0.85 1.19 1.98 1.20 Ak

a. 7 , atmospheric transmissivity: L, upwelling radiation: L,
downwelling radiation: wv , water vapor

For each image, 7, LT and L were obtained using
online radiative transfer codes
(http://www.atmcorr.gsfc.nasa.gov/) from  Atmospheric
Correction Parameter Calculator (ACPC) developed by
NASA for Landsat satellites [81, 82] (Table Il). Validation
of ACPC parameters by [83] revealed that LSTs derived
from ETM+ at-sensor radiances by ACPC parameters have
differences from ground measured LSTs over rice fields
within the +1.0K range. The sensitivity analysis of the SC
algorithm was performed to solve the problem if the
accuracy of LST retrieval would be improved after the
improving of LSEs estimate. The RMSE of LST is not only
affected by the SC coefficient’s precision, but also by other
factors, which play the main role in the error of LST. These
factors are total atmospheric WV content and emissivity. In
this study, the method of sensitivity analysis, similarly as
in [39, 84] is used. Hence, the contribution to the error of
LST is given by Equation. (16).

Overall __ 2 2 2 2
O7s =4[Cag T Onear 1O, + 0y (16)

where o2 is the overall standard deviation of LST, o 4

is the standard error of the algorithm, &ygar iS the
contribution of the Noise Equivalent Delta Temperature
(NEAT), o is the error of LSEs and oy is the error of
the atmospheric WV content. The o g is assessed by [85]
and dygar Of TIRS (@ 280K) is 0.05K for b10 and 0.06K
for b11[86] which, errors of LST are negligible. The
studies by [77] reported the RMSE values are below 1 K in
the SC’™* algorithm when WV contents is between 0.5 and
2. g - cm°. Therefore, the o 4 is below 1 K since the VW
contents of the study area is 1.2 for examined dataset
(Table I1). In this paper, the sensitivity analysis is carried
out on emissivity since emissivity has a serious
contribution to the error of the LST. In this regard, o is
given by Equation. (17) for emissivity error.

In the SC algorithm, the atmospheric parameters of the
study area given in Table Il are used. In addition, the mean
surface temperature is set to 300 K and the mean surface
emissivity values are computed for band 10 and 11 using
Table 1.

where o 15 is the standard deviation of LST, T, is the at-
sensor brightness temperature in K, and e,y is the error of
LSE. The error of LST in Fig. 14 was obtained considering
the set parameters in the study area.
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Fig 14. Errors on land surface temperature (Ts) due to the errors
on the land surface emissivity

Theoretically, based on the achieved LSEs the LST
improvement of the SC algorithm is computed using the
error propagation theory. The impact of the LSE
improvement on the LST error using the SC algorithm for
thermal band 10 and 11 are obtained by Equation. (12).
Table (111), shows the impact of the LSE improvement on
the LST for the initial and modified SEBAL-based LSE
estimation methods.

It is noteworthy that in the sensitivity analysis only the
impact of LSE parameter on LST was conducted. As
shown in Fig.1, two examined LSE of ASTER product is
located in different part of one scene in LDCM data. Since,
the first and second LSE of ASTER product located almost
in the non-vegetated and vegetated area, respectively, the
effect of LAI parameter is ineffective in LSE estimation.
As a result, the difference between initial and modified
SEBAL-based is less. In contrast, in the first scene of
ASTER product is almost located in vegetated area, the
impact of the improvement LSE on LST has a noticeable
difference (Table I11). This difference is the result of the
impact of surface parameters such as moisture, texture,
canopy of vegetation and so on in the LSE estimation.
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Table I111. The impact of the LSE improvement on the LST based
on the SC algorithm?

Examined Methods TIRS RMSE of
Scenes Bands LSEs Ts
SEBAL 10 1.37% 1.16 K
SEBAL 11 1.12% 1.03K
1st scene
M_SEBAL 10 0.46 % 0.39K
M_SEBAL 11 0.39 % 0.36K
SEBAL 10 0.69 % 0.60K
SEBAL 11 0.65% 0.58K
2nd scene
M_SEBAL 10 0.46 % 0.40K
M_SEBAL 11 0.43 % 0.39K

a Ts, land surface temperature: ors, root mean square error of Ts

V. CONCLUSION

In this paper, the effects of SRF and the effective
wavelength on SEBAL-based LSE estimation method was
investigated. The 8-14 pm spectral domain of initial
SEBAL, divided into two very narrowband TIR bands
(10.60 - 11.19 pum) and (11.50 - 12.51 um) spectral ranges
in the LDCM. This study investigates the effects of SRF
and effective wavelength of two LDCM TIR bands on
SEBAL-based LSE estimation method. The effectiveness
of the proposed M _eSEBAL method is empirically
evaluated over one scene of LDCM data and the LSEs
achieved by initial and modification methods were
compared to the LSE product of the ASTER in two cases
of IBCV and CBCV. The results obtained by IBCV (Fig.
8a, b, and Fig. 9a, b) showed that in comparison with three
common LSE estimation methods, the achieved results by
the M_seSEBAL method demonstrated better performance
in terms of RMSE on both examined ASTER scenes. The
RMSE of LSE obtained by M_seSEBAL method is 1.59%
and 1.21% in thermal band 10 of the first and second
examined scenes, respectively. Similarity, for the thermal
band 11, the error values are 1.56% and 0.98% in the two
examined ASTER scenes, respectively. Moreover, the
results (Figures 6 and 7a, b) showed that if there is little
difference in the effective wavelength between broadband
and narrowband, the LSE estimation is almost identical to
the non-vegetated area and there is no significant
difference, while it is non-negligible in the vegetated area.
In contrast, if there is a relatively large difference between
the effective wavelength and SRF between them, areas
with vegetation and no vegetation have the greatest
difference and the same performance in LSE estimation. In
addition, analysis of the results showed that the effect of
SRF and wavelengths range of thermal bands in the LSE
estimation in not negligible. On average, there are 0.22%
and 0.61% improvement between initial and modified
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SEBAL methodology for band 10 and band 11,
respectively. As  previously mentioned a small
improvement in LSE can influence LST remarkably. In
addition, the obtained results of CBCV (Fig. 12a, b and
Fig. 13a, b) showed that in classes that consist density
vegetation the M, seSEBAL demonstrated almost the better
performance rather than the compared LSE estimation
methods. These changes may be the result of the impact of
environmental parameters such as moisture, texture, the
canopy of vegetation and SRF, which can be affected on
the LSE estimation.

Moreover, the sensitivity analysis of the SC algorithm
was performed to solve the problem if the accuracy of LST
retrieval would be improved after the improving of LSEs
estimate. The RMSE values of LSE obtained by initial and
M seSEBAL methods are 1.37% (for b10) and 1.12% (for
b 11) which , lead to 1.16 K and 1.03 K errors and 0.46%
(for b10) and 0.39% (for b 11) that lead to 0.39 K and 0.36
K errors in the LST retrieval in the first scene, respectively.
Similarly, for the second scene, the RMSE values are
0.69% (for b10) and 0.65% (for b 11) which lead to 0.6 K
and 0.58 K errors and 0.46% (for b10) and 0.43% (for b
11) which lead to 0.40 K and 0.39 K errors, respectively.
Since, the first and second LSE of ASTER product located
almost in the non-vegetated and vegetated area,
respectively, the effect of LAI parameter is ineffective in
LSE estimation. As a result, the difference between initial
and modified SEBAL-based is less. In contrast, in the first
scene of ASTER product is almost located in vegetated
area, the impact of the improvement LSE on LST has a
noticeable difference (Table IlI). This difference is the
result of the impact of surface parameters such as moisture,
texture, canopy of vegetation and so on in the LSE
estimation.

In sum, since LSE is an important intrinsic property of
the materials its accurate estimation with a greater
computational cost is valuable. In this regard, according to
the experimental results, the modified SEBAL-based LSE
estimation method, M seSEBAL, vyielded a proper
estimation for two datasets, which demonstrated their
stability in contrast to the compared methods for LSE
estimation and LST retrieval.
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