
Journal of Soft Computing and Information Technology (JSCIT)

Vol. 5, No. 1, Springer 2016 ISSN: 2383-1006

Abstract—Software flexibility is the ease with which a

software system can be modified for use in applications or

environments other than those for which it was specifically

designed. Software flexibility is not an absolute term. It is an

important aspect of software quality. Quantifying software

flexibility is increasingly becoming necessary. We have

recently proposed a new approach (referred to as SDAFlex&Rel)

to the development of reliable yet flexible software. In this

paper, a new approach is proposed to quantitatively measure

the flexibility of the software developed using SDAFlex&Rel,

thereby making precise informal claims on the flexibility

improvement. Moreover, the effectiveness of the proposed

measurement approach is empirically investigated in the

multi-lift case study that has already been conducted to

demonstrate the feasibility of SDAFlex&Rel. The results confirm

the flexibility improvement promised by SDAFlex&Rel.

Keywords— design patterns, flexibility, quantitative

measurement, software metrics.

I. INTRODUCTION

Flexibility can be defined as the ability of a system to

respond to potential internal or external changes affecting

its value delivery, in a timely and cost-effective manner.

Thus, flexibility for an engineering system is the ease with

which the system can respond to uncertainty in a manner to

sustain or increase its value delivery [11], [18]. Uncertainty

is a key element in the definition of flexibility. Uncertainty

can create both risks and opportunities in a system, and it is

with the existence of uncertainty that flexibility becomes

valuable.

Rapid technological developments pervade every aspect

of daily life, having a direct effect on the software we use.

Every element of the software’s operational environment is

in a state of constant flux: Frequent changes in the

hardware, operating system, cooperating software, and

client’s expectations are motivated by performance

improvements, bug-fixes, security breaches, and attempts

to assemble synergistically ever more sophisticated

software systems [7]. Classic and contemporary literature

in software design recognizes the central role of flexibility

in software design and implementation. Structured design,

modular design, object-oriented design, software

architecture, design patterns, and component-based

software engineering, among others, seek to maximize

flexibility. Textbooks about software design emphasize the

flexibility of particular choices, thereby implying the

superiority of the design policy they advocate. But despite

the progress made since the earliest days of software

engineering, from the ‘software crisis’ through ‘software’s

chronic crisis’, evolution (formerly ‘maintenance’) of

industrial software systems has remained unpredictable and

notoriously expensive, often exceeding the cost of the

development phase. Flexibility has therefore become a

central concern in software design and in many related

aspects in software engineering research [8], [10], [16-17],

[19].

An artifact is hardly flexible in absolute terms [1-2].

Instead, it may be flexible towards a specific class of

changes and inflexible towards another one. Predicting the

class of changes is the key to understanding software

flexibility. Moreover, an artifact Α is more flexible than

another artifact Β towards a particular evolution step if the

number of changes required for Α is less than those

required for Β. ‘Evolution step’ is regarded as the unit of

evolution with relation to a particular class of changes in

design or implementation [3-4].

We have recently proposed a Software Development

Approach (SDA). This approach, referred to as SDAFlex&Rel

in this paper, promises to develop reliable yet flexible

software [5]. In SDAFlex&Rel, formal (Object-Z) and semi-

formal (UML) models are transformed into each other

using a set of bidirectional formal rules. Formal modeling

and refinement in Object-Z ensure the reliability of

software. Visual models (UML diagrams) facilitate the

interactions among stakeholders who are not familiar

enough with the complex mathematical concepts of formal

modeling methods. Applying design patterns to visual

models improves the flexibility of software. The

transformation of formal and visual models into each other

through the iterative and evolutionary process, proposed in

[5], helps develop the software applications that need to be

A New Approach to the Quantitative

Measurement of Software Flexibility

Abbas Rasoolzadegan

Ferdowsi University of Mashhad, Mashhad, Iran, rasoolzadegan@um.ac.ir

12

A New Approach to the Quantitative Measurement of Software Flexibility………………….……….Abbas Rasoolzadegan

highly reliable yet flexible. The workflow of SDAFlex&Rel is

illustrated in Fig. I.

In this paper, we quantitatively measure the flexibility

improvement promised by SDAFlex&Rel and empirically

investigate such improvement in the multi-lift case study

that has already been conducted to demonstrate the

feasibility of SDAFlex&Rel. Reference [6] elaborately

presents the results of applying SDAFlex&Rel to the multi-lift

system.

The iterative and evolutionary process illustrated in Fig.

1 continues until a final product with a desired quality is

achieved. Fig. 2 illustrates the details of an iteration of

SDAFlex&Rel which consists of the following phases:

• Reliability Assurance Phase (RAP) which supports

formal specification and refinement in Object-Z.

• Visualization Phase (VP) which transforms Object-Z

models into UML ones.

• Flexibility Assurance Phase (FAP) which revises UML

models from the viewpoints of design patterns and

polymorphism.

• Formalization Phase (FP) which transforms UML

models into Object-Z ones.

In the phase FAP of the proposed approach, the

flexibility of the software being developed improves using

Software Engineering (SE) principles such as design

patterns. Each design pattern lets some aspect of system

structure vary independently of other aspects, thereby

making a system more robust to a particular kind of

change.

The flexibility of the software developed using

SDAFlex&Rel is directly proportional to the flexibility of

those design patterns used in the phase FAP during the

different iterations of the development process. Therefore,

to quantify the software flexibility, we can quantitatively

measure the flexibility of the design patterns used during

the development process [7].

To quantify flexibility and make precise informal claims

on the flexibility of design patterns, a notion called

‘evolution complexity’ can be used. The complexity of an

evolution step measures how inflexible is the

design/implementation being evolved towards a particular

class of changes. The fewer the changes are required, the

more flexible it is. As illustrated in Fig. 3, software

Fig. 1. The workflow of SDAFlex&Rel using UML activity diagram.

Fig. 2. A schematic view of an iteration of SDAFlex&Rel.

13

Journal of Soft Computing and Information Technology (JSCIT) ………...………….……….…Vol. 5, No. 1, Spring 2016

evolution can be described as the process during which

changes occur in an old problem, which entail changes in

the corresponding design/implementation. To distinguish

between changes in problems and changes in the

corresponding designs/implementations, we refer to the

former as shifts and to the latter as adjustments, jointly

represented as an evolution step [8].

Let us represent the set of problems as and the set of

designs/implementations as . An evolution step can be

represented as a mapping of the combination of the old

problem , the shifted problem , and

the old design/implementation into the adjusted

design/implementation . This mapping can

thus be represented as a mathematical function , called the

evolution function. This function maps each tuple
 to , such that

 (1)

Where the old design/implementation

realizes , and realizes . Therefore,

an evolution step can be formulated as:

 (2)

We can measure flexibility in terms of the cost of the

evolution process. ‘Evolution cost metric’ (

)

measures the cost of executing an evolution step

 in terms of the

software complexity of each module affected by

the adjustments [8-9]:

 ∑

 (3)

where can be any software complexity metric such as

LoC (lines of code) or CC (Cyclomatic Complexity), and

 () designates the symmetric

set-difference between the set of modules in and the

set of modules in , namely:

 (4)

The evolution complexity of a design/implementation
towards an evolution step () is formulated

as
 . If the evolution complexity of

towards is fixed and independent of its size

(
), is flexible towards , but if the

evolution complexity of directly or indirectly grows as a

function of the size of , it is inflexible towards . It is

worth mentioning that evolution complexity does not

measure the actual cost of the evolution processes requires,

but how it grows. We can quantify the flexibility of each

design pattern towards specified evolution steps by

calculating the corresponding evolution complexity.

The rest of this paper is organized as follows: In section

two, the evolution complexity of each of the design

patterns that have been used during the development of the

multi-lift system is calculated. Section three discusses the

conclusions.

II. QUANTIFYING THE FLEXIBILITY OF THE

MULTI-LIFT SYSTEM DEVELOPED USING

SDAFLEX&REL

A non-trivial case study, called the multi-lift system, has

been taken as a test bed to evaluate the feasibility of

SDAFlex&Rel. This system includes parallel, distributed,

embedded, and real-time software. A detailed report of this

empirical study has been presented in [6]. Such a system

needs high reliability and flexibility. As an instance, the

dispatching strategy should be continuously updated for

each lift according to some criteria such as manager

policies and traffic modes, which dynamically change.

These variable factors increase the necessity of designing a

flexible controller having the potential to change the

control strategy dynamically.

In the process of developing the multi-lift system using

SDAFlex&Rel, the Observer, Strategy, and Mediator design

patterns have been used during the phase FAP to improve

the system flexibility. In this section, we investigate the

usability of the evolution cost metric for corroborating

informal claims on the flexibility of these design patterns.

A. Observer Pattern

The applications of the Observer pattern are [10]:

• When an abstraction has two aspects, one dependent

on the other. Encapsulating these aspects in separate

objects lets vary and reuse them independently.

• When a change to one object requires changing others,

and you do not know how many objects need to be

changed.

• When an object should be able to notify other objects

without making assumptions about who these objects

are.

If at least one of the above-mentioned conditions holds

in a part of software design, this part has the potential to be

Fig. 3. An evolution step [8].

14

A New Approach to the Quantitative Measurement of Software Flexibility………………….……….Abbas Rasoolzadegan

revised by the Observer pattern. This pattern defines a one-

to-many dependency between one object named subject

and its dependent objects, referred to as observers. All

observers are notified and updated automatically once the

state of the corresponding subject changes. Fig. 4 illustrates

a part of the initial class diagram of the multi-lift system.

As illustrated in the left column of Fig. 4, there are three

dependencies between the objects of this part:

1. Whenever the traffic information (trafficinfo),

managed by TrafficManager, changes, the value of

traffic features (objects of TrafficFeature) should be

updated using the method MeasureFeature.

2. Whenever the value of a traffic feature is updated, the

suitability percentage of traffic modes (objects of

TrafficMode) should be updated by the method

CalculateSuitabilityPercentage.

3. Once the suitability percentage of a traffic mode is

updated, the method CalculateCurrentTrafficMode of

the class ControlStrategyGenerator determines the

current traffic mode.

According to the applications of the Observer pattern,

this part has the potential to be revised using this pattern.

The right column of Fig. 4 illustrates the revised version. In

the Observer pattern, subjects implicitly know their

observers. Any number of objects can observe a subject.

Observers can be attached to subjects or be detached from

them through the interface of subjects. Each subject sends a

notification to its observers through calling their Update

method whenever a change occurs to make the state of its

observers consistent with its own. Moreover, an observer

may ask the subject for information to reconcile its state

with the state of the subject. This pattern claims that:

• It minimizes the coupling between a subject and its

observers. A subject has the list of its observers. These

observers conform to the interface of an abstract class

named Observer. The subject knows only Observer,

not all concrete classes of Observer.

• It provides broadcast communication. A subject

automatically broadcasts notifications to all its

observers. The subject does not know how many

dependent objects exist. It is only responsible for

broadcasting notifications. Therefore, observers can

be added or removed at any time in a flexible way.

According to (3), we use
 to corroborate the

above-mentioned claims and to make them precise. In other

words, we assume that the cost of adding, removing, or

changing each modular unit () is equal to 1 ().

Moreover, ‘class’ is assumed as the modular unit. Thus, the

evolution cost metric is estimated by calculating the

Before Revision (Traditional design)

After Revision (Pattern-based design)

Fig. 4. First revision of the initial class diagram of the multi-lift system using the Observer pattern.

15

Journal of Soft Computing and Information Technology (JSCIT) ………...………….……….…Vol. 5, No. 1, Spring 2016

number of the classes that are added, removed, or adjusted

as a result of the evolution. The results of this analysis are

summarized in Table 1.

The results show that the complexity of evolving the

Observer pattern or each Observer-based design towards

shifts in observers () and subjects () is fixed ()

because a subjects knows only the abstract class of its

observers, not all its concrete observers. Therefore, we can

conclude that the Observer pattern as well as each design

based on this pattern (such as the design illustrated in the

right column of Fig. 4) is flexible towards both and .

As shown in Table 1, the evolution complexity of a

traditional design (such as the design illustrated in the left

column of Fig. 4) towards and is proportional to the

number of subjects () and observers

(), respectively. As a result, it is inflexible

towards both and .

B. Strategy Pattern

We can use the Strategy pattern when [10]:

 Many related classes differ only in their behavior.

Strategies provide a way to configure a class with one

of many behaviors.

 You need different variants of an algorithm. For

example, you might define algorithms reflecting

different space/time trade-offs. Strategies can be used

when these variants are implemented as a class

hierarchy of algorithms.

 An algorithm uses data that clients should not know

about. Use the Strategy pattern to avoid exposing

complex, algorithm-specific data structures.

 A class defines many behaviors, and these appear as

multiple conditional statements in its operations.

Instead of many conditionals, move related

conditional branches into their own Strategy class.

If at least one of the above-mentioned conditions holds

in a part of the initial design of software, this part has the

potential to be revised by the Strategy pattern. This pattern

configures a class named context with one of several

behaviors. Fig. 5 illustrates another part of the initial class

diagram of the multi-lift system. As illustrated in this

figure, the central controller (the class CentralController)

contains an external request allocator (the class

ExternalRequestAllocator). The role of such an allocator is

to select the most suitable lift to respond to the current

external request according to some parameters such as

current values of the evaluation criteria (objects of the class

EvaluationCreteria).

There are different strategies to respond to external

requests according to various parameters such as managers’

policies (the association class ManagerPolicy) and the

current traffic mode. These strategies need to change at run

time according to values of the above-mentioned

parameters. In order to meet the required flexibility for

changing these strategies at run time, this part of the class

diagram has been revised based on the Strategy pattern.

The Strategy design pattern claims that:

 It provides a family of algorithms and behaviors as

hierarchies of strategy classes for contexts to extend

reusability.

 It provides an alternative for subclassing. It

encapsulates various algorithms in distinct strategy

classes. This makes the algorithms have the ability to

change or extend independently of the contexts easily.

 It eliminates conditional statements that are used for

the selection of the desired behavior by encapsulating

behavior in discrete strategy classes.

To measure the flexibility of the strategy design pattern,

TABLE I
THE COMPLEXITY OF EVOLVING THE OBSERVER PATTERN VS.

TRADITIONAL DESIGN TOWARDS SHIFTS IN OBSERVERS AND SUBJECTS

Evolution step

Design policy

Change/Add/Rem
ove observer

Change/Add/Remove
subject

Observer pattern

Traditional design
(‘anti-pattern’)

0<θ≤1

0<θ≤1

Before Revision (Traditional design) After Revision (Pattern-based design)

Fig. 5. Second revision of the initial class diagram of the multi-lift system using the Strategy pattern.

16

A New Approach to the Quantitative Measurement of Software Flexibility………………….……….Abbas Rasoolzadegan

we assume that the cost of adding, removing, or changing a

modular unit is proportional to the number of those

statements of that are added, removed, or adjusted as a

result of the evolution ((Lines of

Statements)). Moreover, ‘class’ is assumed as the modular

unit. Thus, the evolution cost metric is estimated by

calculating the number of the statements that are added,

removed, or adjusted as a result of the evolution. We use

 to corroborate the above-mentioned claims and to

make them precise. The results of this analysis are

summarized in Table II.

The results show that the complexity of evolving the

Strategy pattern as well as each Strategy-based design

towards shifts in strategies () is fixed () because the

strategies can be changed or extended independently of the

contexts. Therefore, we can conclude that the Strategy

pattern or each design based on this pattern (such as the

design illustrated in the right column of Fig. 5) is flexible

towards .

As shown in Table II, the evolution complexity of a

traditional design (such as the design illustrated in the left

column of Fig. 5) towards is proportional to the number

of strategies () because of the

corresponding conditional statements, so it is inflexible

towards .

C. Mediator Pattern

We may use the Mediator pattern when [10]:

 A set of objects communicate in well-defined but

complex ways. The resulting interdependencies are

unstructured and difficult to understand.

 Reusing an object is difficult because it refers to and

communicates with many other objects.

 The behavior distributed between several classes

should be customizable without a lot of subclassing.

If at least one of the above-mentioned conditions holds

in a part of the initial design of software, this part has the

potential to be revised by the Mediator pattern. The

Mediator pattern defines an object named mediator. This

object encapsulates how a set of objects, referred to as

colleagues, interact.

TABLE II
THE COMPLEXITY OF EVOLVING THE STRATEGY PATTERN VS.

‘SWITCH’ OR ‘MULTIPLE CONDITIONAL’ STATEMENTS TOWARDS

SHIFTS IN STRATEGIES

Evolution step

Design policy
Change/Add/Remove observer

Strategy pattern

O(1)

‘Switch’ or ‘multiple
conditional’ statements

0<θ≤1

Before Revision (Traditional design)

After Revision (Pattern-based design)

Fig. 6. Third revision of the initial class diagram of the multi-lift system using the Mediator pattern.

17

Journal of Soft Computing and Information Technology (JSCIT) ………...………….……….…Vol. 5, No. 1, Spring 2016

The diagram illustrated in the left column of Fig. 6 has

already been revised using the Observer pattern (in Fig. 4).

The flexibility of this part is improved further, using the

Mediator pattern. An object named ChangeManager is

introduced when the coupling between subjects and

observers is complex. This object, as an instance of the

Mediator pattern, is to keep these complex relationships.

The main responsibilities of this object are 1) it defines an

interface to connect a subject to its observers and manages

this relationship. This omits the need for subjects to know

their observers explicitly and vice versa, 2) it defines a

straightforward update strategy and 3) it notifies and

updates all related observers at the request of

corresponding subject. The right column of Fig. 6

illustrates the newly revised version of this part after

applying the Mediator pattern.

The Mediator design pattern claims that:

 It makes changing behavior easy through subclassing

the mediator object without changing its colleagues.

 A mediator object decreases the coupling between its

colleagues. Therefore, they can be varied and reused

independently.

 Many-to-many interactions among the colleagues of

a mediator object are replaced with one-to-many

interactions between the mediator object and its

colleagues. Understanding, maintenance, and

extension of one-to-many relationships are easier,

compared to many-to-many ones.

We use
 to corroborate these claims and to make

them precise. The results of this analysis are summarized in

Table III.

The results show that the complexity of evolving the

Mediator pattern or each Mediator-based design towards

shifts in behavior (), colleagues (), and relationships

() is fixed () because mediators and colleagues can

be changed independently. Therefore, we can conclude that

the Mediator design pattern or each design based on it is

flexible towards , , and . As shown in Table III, the

evolution complexity of a traditional design towards these

three evolution steps (, , and) is directly

proportional to the number of colleagues (
), so it is inflexible towards , , and

because of the coupling between mediators and colleagues.

The results of the aforementioned analyses show that the

revision of the initial class diagram of the multi-lift system

using the Observer, Strategy, and Mediator patterns during

the phase FAP of SDAFlex&Rel improves the flexibility of the

system. The flexibility is quantified using the evolution

cost metric through calculating the complexity of evolution

steps. In other words, the flexibility improvement claimed

by these three design patterns is corroborated by the

evolution cost metric. There is a direct relationship among

the value of the evolution cost, the evolution complexity,

and the flexibility of a design towards a particular

evolution step [12-15], [18]. It is worth mentioning that

there is no limitation on the application domain of the

proposed method in measuring the flexibility of design

patterns. As previously mentioned, the reason of selecting

the three patterns Strategy, Mediator, and Observer is the

design requirements of the multi-lift system used as the

case study.

III. CONCLUSION

In this paper, we quantify the flexibility improvement

promised by the software development approach

SDAFlex&Rel, which has recently been proposed to develop

reliable yet flexible software. This approach improves

software flexibility through preparing the ground for the

visual revision of the structure and the behavior of the

software being developed using design patterns. In such a

case, software flexibility is directly proportional to the

flexibility of those design patterns used during its

development process. Therefore, to quantify the flexibility

of software, the flexibility of each of the design patterns

used during the development process of the software is

quantitatively measured by calculating the complexity of

evolution steps through the evolution cost metric. As an

empirical study, the flexibility of the multi-lift system that

has already been developed using SDAFlex&Rel is quantified.

The results confirm the promised flexibility improvement

ACKNOWLEDGMENT

This work was supported in part by: Ferdowsi University

of Mashhad’s Research Council, under grant #28190 (dated

14-11-92) on Static Fine Job.

REFERENCES

[1] J. Niu, “A Measurement Method of Software Flexibility Based on

BP Network,” in Proc. Int. Workshop on Intelligent Systems and

Applications (ISA), 2009, pp. 1-4.

[2] S. PENG, “User-Oriented Measurement of Software Flexibility,” in

TABLE III
THE COMPLEXITY OF EVOLVING THE MEDIATOR PATTERN VS.

TRADITIONAL DESIGN TOWARDS SHIFTS IN BEHAVIOR,
COLLEAGUES, AND RELATIONSHIPS

Design policy

Evolution step
Mediator pattern

Traditional design

(‘anti-pattern’)

Change behavior

Change colleague

Extend

relationships

between colleagues

18

A New Approach to the Quantitative Measurement of Software Flexibility………………….……….Abbas Rasoolzadegan

Proc. World Congress on Computer Science and Information

Engineering, 2009, PP. 629-633.

[3] R. Martinho, “A Two-Step Approach for Modeling Flexibility in
Software Processes,” in Proc. 23rd IEEE/ACM International

Conference on Automated Software Engineering, Italy, 2008, pp.

427-430.

[4] H. Oliver, O. Philipp, and B. Udo. (2010, Jan.). Improving Software
Flexibility for Business Process Changes. Business & Information

Systems Eng. [Online]. 2(1), pp. 3-13. Available:
http://link.springer.com/article/10.1007/s12599-009-0086-8

[5] A. Rasoolzadegan and A. Abdollahzadeh. (2014, Jul.). Reliable yet

Flexible Software through Formal Model Transformation (Rule
Definition). Journal of Knowledge and Information Systems (KAIS),

[Online]. 40 (1), PP. 79-126. Available:

http://link.springer.com/article/10.1007/s10115-013-0621-2

[6] A. Rasoolzadegan and A. Abdollahzadeh, “Specifying a Parallel,
Distributed, Real-Time, and Embedded System: Multi-Lift System

Case Study,” Information Technology and Computer Eng. Faculty,

Amirkabir Univ. Technology, Tehran, Iran, Tech. Rep., 2011.

[7] H. B. Christensen, “Flexible, Reliable Software: Using Patterns and

Agile Development,” Chapman and Hall/CRC, 1st ed., 2010.

[8] H. Eden and T. Mens. (2006, Jun.). Measuring Software Flexibility.
IEE Software. [Online]. 153(3), pp. 113-126. Available:

http://ieeexplore.ieee.org/document/1645518/

[9] G. H. Z. LI. (2008, Apr.). Research on Flexibility Metrics in Software

Architecture Level. Computer Science. [Online]. 35 (4). pp. 259-264.
Available:

http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJA200804078.htm

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Pattern:

Elements of Reusable Object-Oriented Software,” Addison-Wesley

Publishing Company, Fifth ed., 1995.

[11] A. M. Ross, D. H. Rhodes, and D. E. Hastings. (2008, Apr.).

Defining Changeability: Reconciling Flexibility, Adaptability,

Scalability, Modifiability, and Robustness for Maintaining System
Lifecycle Value. Systems Engineering. [Online]. 11(3), pp. 246–262.

Available:

http://onlinelibrary.wiley.com/doi/10.1002/sys.20098/abstract

[12] R. S. A. DeLoach and V. A. Kolesnikov, “Using Design Metrics for
Predicting System Flexibility,” in Proc. Fundamental Approaches to

Software Engineering, 2006, pp. 184-198.

[13] T. Sasaki, N. Yoshioka, Y. Tahara, and A. Ohsuga, “Evaluation of
Flexibility to Changes Focusing on the Variable Structures in

Legacy Software,” in Proc. Knowledge-Based Software

Engineering: 11th Joint Conference, 2014, pp. 252–269.

[14] Y. Gao and Y. Yang, “Flexibility of Software Development

Method,” in Proc. Advances in Intelligent and Soft Computing,

2011, pp. 383-387.

[15] Y. Wang, M. Jia, J. Guo, and B. Zhang, “Evaluating Model of

Software Flexibility of Domestic Foundational Software,” in Proc.

International Conference on Electrical and Control Engineering,

2011, pp. 5906-5909.

[16] S. Jarzabek and H. D. Trung, “Flexible generators for software reuse

and evolution,” in Proc. 33rd international conference on Software

engineering, 2011, pp. 920-923.

[17] S. Niu, A. Xu, and Z. Song, “A flexible software framework with

dynamic expansible signals,” in Proc. 2014 IEEE UTOTESTCON,

2014, pp. 355-359.

[18] B. Johnson, W. W. Woolfolk, R. Miller, and C. Johnson, “Flexible

Software Design: Systems Development for Changing

Requirements,” CRC Press, 1th ed., 2005.

[19] I. Kim, D. Bae, and J. Hong. (2007, Nov.). A component

composition model providing dynamic, flexible, and hierarchical

composition of components for supporting software evolution.

Journal of Systems and Software. [Online]. 80(11), pp. 1797-1816.

Available:

http://www.sciencedirect.com/science/article/pii/S016412120700065

9

19

اطلاعاتفن آوري نرم و رايانش پژوهشي-علميمجله
 3939-1001شاپا: 1935 سال بهار ،1، شماره 5جلد

 افزار پذيري نرم گيري كمّي انعطاف كار جديد براي اندازه يك راه

زادگان عباس رسول

rasoolzadegan@um.ac.ir ران،ی، امشهد، فردوسی مشهددانشگاه ،ی، دانشکده مهندساستادیار

قسزمي كزه در كاربرد زا و هبز افززار نرميك پذيري نرم افزار عبارت است از ميزان سهولت بهبود و توسعه انعطاف -دهکيچ

افزار يزك مفهزوم پذيري نرم نيز قابل استفاده گردد. انعطاف ، ايي غير از آنچه كه در ابتدا براي آن طراحي شده است محيط

افززار بزه پذيري نرم گيري كمّي انعطاف آيد. ضرورت اندازه افزار به شمار مي رم اي مهم كيفيت ن مطلق نيست و از جمله جنبه

پزذير افزار قابل اعتماد و در عين حال انعطاف كار جديد براي توسعه نرم اخيراً يك راه صورت روزافزون در حال افزايش است.

پزذيري گيري كمّزي انعطزاف زهانداكار جديد براي (توسط نويسنده ارائه شده است. در اين مقاله يك راهSDAFlex&Relنام)به

گردد ادعا اي غيردقيزق ارائزه شزده براي اين منظور سعي مي گردد. ارائه ميSDAFlex&Relكمك يافته به افزا اي توسعه نرم

گيري پيشزنهادي بزه صزورت مچنين، كارايي را کار اندازه ردد.پذيري به كمك الگو اي طراحي كمّي گ براي بهبود انعطاف

نيز SDAFlex&Relسنجي تجربي و عملي در قالب يك مطالعه موردي با عنوان آسانسور چند كابينه كه پيش از اين براي امکان

را تأييزد SDAFlex&Relپذيري وعده داده شزده توسزط گردد. نتايج بهبود انعطاف مورد استفاده قرار گرفته است، بررسي مي

 كند. مي

 .افزار گيري كمیّ، الگوهاي طراحی، معيارهاي نرم پذیري، اندازه انعطاف :يديلك ي ا واژه

