Application of Sequential Particle Filter in Locating EEG Signal Sources

Document Type : Persian Original Article

Authors

Electrical Eng. Dept., Yazd University

Abstract

This paper addresses the problem of EEG source localization using a new method based on particle filter. The proposed method is named sequential particle filter (SPF). SPF estimates each source's state vector parameters separately by considering the effect of other active sources. This method applies some modifications to particle resampling and weighting steps on conventional particle filter algorithms. These modifications, which are kind of applying spatial filtering on particles, lead to less susceptibility to noise for SPF comparing to the conventional particle filters. The SPF method has evaluated using two kinds of simulation scenarios (single-tone and Pseudo-real EEG data) and real EEG data. The SPF results have been compared to conventional particle filter, LCMV beamformer, and sLORETA (schematically comparison). The results have shown that SPF improves localization accuracy in low SNRs compared to the conventional particle filter algorithm and LCMV beamformer methods. In addition, simulation results illustrate that the SPF method is more effective in localizing simultaneous active sources than the others. Also, since the SPF method divides the state vector into several sub-vectors (related to the number of sources), it has higher computational speed than the conventional particle filter.

Keywords


[1] M. A Jatoi, et al, "A survey of methods used for source localization using EEG,” Biomedical Signal Processing and Control," Elsevier, no. http://dx.doi.org/10.1016/j.bspc.2014.01.009, 2014.
[2] J. Liu, Y. Sheng and et al, “Improved ASD classification using dynamic functional connectivity and multi-task feature selection,” Elsevier; Vol 138, 82-87, October 2020.
[3] Š. Holiga and et al, “Patients with autism spectrum disorders display reproducible functional connectivity alterations,” Science Translational Medicine, Vol. 11, Issue 481, eaat9223, 2019.
[4] A. Zaitcev, G. Cook, W. Liu, M. Paley, E. Milne, “Source Localization for Brain-Computer Interfaces”, Intelligent Systems Reference Library, vol 74, Springer, Cham, 2015.
[5] N. Thinh, et al. "Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging," Journal of neural engineering, 2018.
[6] D. Haputhanthri, et al, “An EEG based channel optimized classification approach for autism spectrum disorder,” IEEE Moratuwa Engineering Research Conference (MERCon), 2019.
[7] M. Tudor, L. Tudor, K.I. Tudor, Hans Berger (1873–1941), “The History of Electroencephalography,” USA: PubMed Publications, 2005.
[8]  S. Sanei and J. Chambers, “EEG Signal Processing,” New York, NY, USA: Wiley, 2007.
[9] B. Burle, L. Spieser, et al, “Spatial and Temporal Resolutions of EEG: Is It Really Black and White? A Scalp Current Density View,” International Journal of Psychophysiology, Elsevier, 2015.
[10] J. Kayser, C. E. Tenke, “Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: A tutorial review,” International Journal of Psychophysiology, Elsevier, 189–209, 2015.
[11] J. Seidlitz, et al, “A population MRI brain template and analysis tools for the macaque,”  NeuroImage, Volume 170, Pages 121-131, 2018.
[12] H. R. Mohseni, S. Sanei, et al, “A Beamforming Particle Filter For EEG Dipole Source Localization,” IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP) 2009.
[13] P. Georgieva, et al, “A Beamformer-Particle Filter Framework for Localization of Correlated EEG Sources,” IEEE Journal of Biomedical and Health Informatics, VOL. 20, NO. 3, MAY 2016.
[14] S. K. Veeramalla, V. K. Hanumantha Rao Talari, “Multiple Dipole Source Localization of EEG Measurements Using Particle Filter With Partial Stratified Resampling,” Springer, Biomed. Eng. Lett. 10, 205–215, February 2020.
[15] T. Zarghami, H. S. Mir, "Transfer-Function-Based Calibration of Sparse EEG Systems for Brain Source Localization," IEEE Sensors Journal, vol. 15, p. No.3, March 2015.
[16] M. V. Vliet, N. Chumerin and et al, “Single-trial ERP component analysis using a spatio-temporal LCMV beamformer,” IEEE Transactions on Biomedical Engineering, 0018-9294 (c), 2015.
[17] A. AroudiS. Doclo, “Cognitive-Driven Binaural LCMV Beamformer Using EEG-Based Auditory Attention Decoding,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019.
[18] A. Galka, O. Yamashita, T. Ozaki, R. Biscay, and P. Valde, "A Solution to The Dynamical Inverse Problem of EEG Generation Using Spatiotemporal Kalman Filtering," Inverse Problems, pp. 435–453, 2004.
[19] B. Ristic, S. Arulampalam, and N. Gordon, “Beyond the Kalman Filter: Particle Filters for Tracking Applications,” Norwood, MA, USA: Artech House, 2004.
[20] G Şengül, U Baysal, “An Extended Kalman Filtering Approach For The Estimation Of Human Head Tissue Conductivities By Using EEG Data: A Simulation Study,” Physiological MeasurementVolume 33Number 4, 2012.
[21] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tutorial On Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking,” IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.
[22] Godsill, Simon. “Particle filtering: the first 25 years and beyond." ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019.
[23] S. Asadzadeh, et al, “A systematic review of EEG source localization techniques and their applications on diagnosis of brain abnormalities,” Journal of Neuroscience Methods, Volume 339, 2020.
[24] N. Amor, A. Meddeb and S. Chebbi, "EEG Source Estimation using Multiple Unscented Particle Filtering,"  International Conference on Advanced Systems and Emergent Technologies (IC_ASET), pp. 295-299, 2019.
[25] N. Amrouche A. Khenchaf Daoud. Berkani, “Multiple Target Tracking Using Track Before Detect Algorithm,” International Conference on Electromagnetics in Advanced Applications (ICEAA), 2017.
[26] سید مرتضی نوریان، حمیدرضا ابوطالبی  و وحید ابوطالبی "معرفی فیلتر ذره ترتیبی برای ردیابی اهداف چندگانه بدون آستانه­گذاری بر مشاهدات،" بیست و ششمین کنفرانس بین‌المللی کامپیوتر، انجمن کامپیوتر ایران، تهران، 1399.
[27] سید مرتضی نوریان، حمیدرضا ابوطالبی و وحید ابوطالبی "مکانیابی منابع سیگنال­های EEG با استفاده از فیلتر ذره ترتیبی،" بیست و ششمین کنفرانس بین‌المللی کامپیوتر، انجمن کامپیوتر ایران، تهران، 1399.
[28] L. Miao, J. J. Zhang, C. Chakrabarti, A. Papandreou-Suppappola, “Efficient Bayesian Tracking of Multiple Sources of Neural Activity: Algorithms and Real-Time FPGA Implementation,” IEEE Transactions on Signal Processing, vol. 61, no. 3, Feb. 2013.
[29] A. Doucet, S. Godsill, and C. Andrieu, “On Sequential Monte Carlo Sampling Methods for Bayesian Filtering,” Statist. Comput., vol. 10, no.3, pp. 197–208, 2010.
[30] J. C. Mosher, R. M. Leahy, P. S. Lewis, "EEG and MEG: Forward Solutions for Inverse Methods," IEEE Transactions on Biomedical Engineering, vol. 46, no. 3, March 1999.
[31] T. R. Kn¨osche, E. M. Berends, H. R. Jagers, andM. J. Peters, "Determining The Number of Independent Sources of The EEG: A Simulation Study On Information Criteria," Brain Topography, vol. 11, no. 2, pp. 111–124, 1998.
[34] C. Cottone, C, Porcaro, A. Cancelli, E. Olejarczyk, C. Salustri, F. Tecchio, “Neuronal electrical ongoing activity as a signature of cortical areas,” Brain Struct Funct, Springer, 2017.