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Abstract 
Farid-Hranilovic (FH), in an interesting way, found a capacity-achieving discrete input distribution for free 
space optical (FSO) channel by numerically maximizing the input-parameter (β) dependent mutual information 
between channel input and the scaled output. In this paper, first, by using a simple mathematical inequality, we 
find an upper bound for FH input-scaled output mutual information and then maximize the obtained upper 
bound to reach to a third order equation for the optimum β as β*. Our equation (i) determines β* exactly in 
contrary to the FH work where β* is found numerically through an exhaustive search and also, (ii) is consistent 
with the estimated equation for β* in the FH work. Our upper bound is shown to be tighter than the proposed 
upper bound in the FH work that is found through sphere packing argument at very high SNRs. Using numerical 
illustrations at different SNRs, we compare our β*s, mass point spacing as ℓ*, and upper bound with previous 
works.  
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1. Introduction 

Free space optical (FSO) channels provide 
an economical high-speed link for wireless 
access. They also provide spectral segment and 
high security. Recently the use of FSO channels 
and study on them is being specially interesting. 
They are used in a lot of urban areas, as well as 
a supplement to radio frequency (RF) links and 
the recent development of radio. A majority of 
wireless optical channels are intensity 
modulated with direct detection [1]. The 
receiver usually consists of a photo-detector 
that measures the optical intensity of the 
incoming light and produces an output signal 
which is proportional to the detected intensity, 
corrupted by noise. In these channels data are 
transmitted by modulating the instantaneous 
intensity of a laser or a LED. So all the 
transmitted signals are non-negative. In 
addition, an average optical power, i.e., average 
amplitude, constraint is imposed on the 
transmitted signal, due to eye safety and 
physical limitations [1,2]. A peak amplitude 
constraint is also applied due to safety. A good 
discrete time representation for this channel is 
given by [1], 

Y = rX+Z,     (1) 

where X, is the transmitted signal, Y, is the 
output signal and Z, models both thermal noise 
and ambient light induced shot noise and can be 
well modelled as zero mean, signal 
independent, Gaussian noise with variance    

or Z ∼ N(0,   ). The constant r represents 
channel coherent fading and without loss of 
generality, we set r = 1. Consraints are: 

X ≥ 0,      E{X} ≤ P,                                  (2) 

where P is the average power limit. Notice 
that although the transmitted signal, X must be 
nonnegative, the output signal, Y can be either 
negative or positive. The optical SNR is defined 
as P/σ.  Channel capacity is defined as the 
maximum mutual information between the 
channel input and output under nonnegativity 
and average optical power constraint where the 
maximization is carried out over all possible 
input distributions. 

Previous Works 
It was shown in [3] that the capacity-

achieving input distributions for channels with 
constrained input amplitude and power are 
discrete with a finit number of mass points. 

Similar results were obtained for optical 
photon-counting, i.e., Poisson channels, with 
optical power constraints [4]. 
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   In other words, the input distribution that 
maximizes the mutual information is defined as, 
Q = {qX (x): qX (x) = ∑      k  ( −  k),ak ≥ 0, xk ≥ 0, ∑      k = 1, m ∈ Z+, P ≥ ∑      k xk},  (3) 

where  (. ) is the delta function, ak and  k 
are the amplitude and position of the kth mass 
point respectively, and Z+ is the set of positive 
integers. The number of mass points is m + 1. 
Finding this distribution requires solving a 
complex non-linear optimization at each SNR.  

   In [5], FH presented a family of discrete 
time distribution with equally spaced mass 
points derived via source entropy maximization 
when r = 1. A capacity-approaching input 
distribution was obtained numerically by 
maximizing the mutual information over the 
maxentropic input distribution.  

   In [6], FH generalized their work in [5], 
channel fading was also considered and CSI 
was available at both the transmitter and the 
receiver (coherent). They modelled channel loss 
and fading by a Gamma-Gamma distribution. A 
capacity-approaching input distribution was 
obtained numerically by maximizing the mutual 
information over the maxentropic input 
distribution. 

In [7], a new closed-form upper bound on 
the capacity of power constrained optical 
wireless links was derived when on-off keying 
(OOK) formats were used. CSI was available at 
both  the transmitter and the receiver. Channel 
capacity was considered as a random variable 
following the Gamma-Gamma distribution 
corresponding to the atmospheric turbulence 
model. A maximization was carried out on the 
average value of the channel capacity known as 
the ergodic capacity over the input distribution 
and the upper bound was computed. 

In [8], a general upper bound for the mutual 
information of FSO channels was found when 
CSI was available at both the transmitter and 
the receiver (coherent) through a simple 
mathematical inequality, and a closed-form for 
the corresponding optimal input distribution 
was obtained by maximizing the mutual 
information over all the discrete input 
distributions with equally spaced mass points. 
The approximated optimal input distributions 
were found directly through a second order 
equation that was independent of channel 
parameters, in contrary to [5,6,7], where the 
optimal input distributions were found 
numerically. 

In [1,2], FH first considered a family of 
maxentropic input distribution with equally 
spaced mass points subject to the constraints, 

qX(x) = ∑        ( −  ℓ),             (4) 

q*
X(x) ≜ arg max H(x), qx(x)           (5) 

H(x) = −∑    ( ) log    (x) = 
−∑         log   ,       (6)  

where ℓ is the mass point spacing and q*
x(x) 

is the optimal input distribution that maximizes 
source entropy. The constraints are: 

 ∑      k =1   ,   P = ∑  ℓ     k. 

Note that although any distribution for qX(x) 
was sufficient to provide a lower bound, FH 
proposed selecting the maxentropic distribution 
subject to the constraints under the intuition that 
it was close to the capacity at high SNRs.    

Applying the method of lagrange 
multipliers, the optimal parametrized input 
distribution was given by, 

q*
X(x) = ∑ ℓℓ          ℓ        ( −  ℓ),    (7) 

second they scaled the output to, 

W = Y/ℓ =    ℓ  =  ℓ + Zℓ,      (8) 

Z ∼ (0,  ) → Zℓ  =   ℓ ∼ (0, β 2 =   ℓ ), 

where Zℓ is the scaled output noise with 
zero mean and variance β 2.  

Reparametrizing the parametrized optimal 
input distribution in (7) with β, 

q*
X(x) = ∑                          ( −  ℓ).       (9) 

The scaled output distribution remained 
Gaussian for every k and had the PDF below, 

fW(w) = ∑      
σ

         σ     
σ

             (   )     (10) 

Then they found a lower bound for the 
capacity of FSO channel for each SNR as 
Iq,β(X;W),  

Iq,β (X;Y) = Iq,β (X;W) = H(W) – H (W|X) = 
H(W) – H(Zℓ) = − ∫ W(w) log  W(w) dw 

−    log (2    ) 

=−∫ ∑      
σ

         
σ     

σ

             (   )    .    
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log ∑      
σ

         σ     
σ

             (   )     d −   log (2    ).             (11) 

   In [2], for a given P/σ maximization of 
the mutual information given in (11) as, 

 β*(SNR) = arg max Iq,β (X;W),            (12) 

                            q, β 

was solved numerically using the bisection 
method over wide range of β to find the lower 
bound, and no analytic form was provided. The 
lower bound was computed through numerical 
integration. 

   In [1], maximization of the mutual 
information in (11) was carried out by 
discretizing the range β ∈ (0, 1] with an 
increment of ∆β = 5 × 10-4. For each entry in 
the discrete set, the mutual information was 
computed numerically to see if it became 
maximum or not. 

   A new upper bound for the capacity of 
FSO channels was also obtained through a 
sphere packing argument in [1,2].  

Our Work 
By using a simple mathematical inequality 

we find a new upper bound for the FH input-
scaled output mutual information. Then, by 
maximizing the obtained upper bound over all 
βs, we reach to a third order equation for β* as 
the optimum β. Our equation, (i) determines β* 
exactly, in contrary to [1], where β* is found 
numerically through an exhaustive search, and 
also, (ii) is consistent with the estimated 
equation for β* in [1]. 

Finally, we illustrate numerically a 
comparison between our β*, ℓ* and upper bound 
with previous works. 

Paper Organization 
This paper has 4 sections. Section II, 

includes main results, an upper bound for Iq,β 
(X;Y) is found and by maximizing the upper 
bound over all βs, we find the optimum β as β* 
for each given SNR. In section III, we plot β*, 
ℓ* and the obtained upper bound versus SNR, 
discuss on the figures and compare them with 
previous works. The paper concludes in section 
IV. 

2. Main Results 

In this section, first we determine an upper 
bound for Iq,β (X;W) in (11). Then we 

maximize the upper bound over all βs and find 
β* at each SNR as follows, 

 Iq,β (X;W) = 

−  11 + β P
σ

 
      βP

σ1 +  β P
σ

    1 2πβ  e (   )    . 
   

log ∑      
σ

         
σ     

σ

           e (   )    dw  

−    log (2πeβ ) = 

−∫ ∑      σ         
σ     σ           e (   )        

. [log (         .       )  + log ( ∑      σ     σ        e (   )    )]  
dw −    log (2πeβ )          (13) 

In (13), the term     
σ     

σ

   e (   )     is 

positive and less than 1. On the other hand we 
have [8], 

0 ≤ ui ≤ 1 → ∑ui ≥ ∏ ui → −log ∑ ui ≤ 
−log∏ ui  

 → −log ∑ui ≤ −∑ log ui, 
 
using the inequality above, it can be written; 

− log [ ∑      σ     σ        e (   )    ] ≤ 

 − ∑ log      σ     σ       e (   )     =  

− ∑ log      σ     
σ

       + ∑ (   )         . log e, (14) 

 
          A                           B            

A = −  (   ) log    σ    
σ

  

B =        w2 −  (   )    w +  (   )(    )     ∫ f   W (w) dw = 1       (15) ∫ wf 
− w(w) = E(w) = k              (16) ∫ w f   W (w) dw = E(w2) = β2 + (E(w))2 = β 

2 + k 2,        (17) 



Journal of Soft Computing and Information Technology (JSCIT) ……………...………………………….….. Vol. 1,No.4, December 2012 

 

52 

in view of (14), (15), (16) and (17) the 
following upper bound is obtained, 

 Iq,β (X;W) ≤ − log (         .       ) −      log    σ    σ  + 

( (   )                              ).log e  

−    log (2πeβ ) = CUB.  (18) 

2.1. Determining β* 
 

   We should determine βs such that the 
upper bound in (18) as CUB becomes 
maximum for each P/σ,        = 0 →  

12 
σ
 β 3− 6(m2 + m) β 2 − ( 12(m + 1)k2− 

12(m2 + m)k +  

(4m3 + 6m2 + 2m))  
σ
 β− 12(m + 1)k2 + 12(m2 

+ m)k − 4m3− 6m2 − 2m = 0,   (19) 

 
we found a third order equation for β*. 

Solving equation (19) analytically we obtain 
three solutions β*1, β*2 and β*3 for β*, 

β*1=      + d1+              (20) 

β*2 =       −     −       − √         −       

β*3 =       −     −       + 
√         −       

where, 

d1= (                                +           +             − d    
+                                +           +           )1/3 

d2=       +          
d3= 3m2 + 3m 

d4 = 6Pk2m + 6Pk2− 6Pkm2− 6Pkm + 2Pm3 + 
3Pm2 + Pm, 

two of the solutions are complex and one of 
them is real. Note that for each P/σ the real 
solution i.e. β*1, is considered for β*. If we put 

m = 1 i.e. k = 0,1 (two mass points) in equation 
(19) we obtain, 

12  β 3 − 12β 2 + 12  β − 12 = 0 →  

(β 2 + 1) (   β− 1) = 0 → β*=    =     ,    (21) 

as we see, β* is a function of P/σ and this 
confirms the estimated β in [1] that is,  β  =    (  )     ,                            (22) 

where c1 = 3.08,  c2 = − 1.06. 
β* in (21) has an inverse relation with SNR, 

in contrary to the estimated β* in (22) that has a 
direct relation with SNR. 

3. Numerical Results 

In this section we plot β*, ℓ* and the upper 
bound that we have found versus SNR, discuss 
on the figures, and compare them with previous 
works.   

 

 
Fig. 1: The optimum β versus SNR. 

 

 
Fig. 2: The corresponding mass point spacing ℓ* for P = 1. 
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Fig.3: The obtained upper bound CUB versus SNR. 

3.1. Discussions on the Figures and Comparisons 
with Previous Works 
 

(i) Fig. 1 shows that our β*s are decreasing 
with SNR and it is in contrast with [1] that β*s 
are increasing with SNR.  

(ii) The maximization in [1] is carried out 
by discretizing the range β ∈ (0,1] with an 
increment of ∆β = 5 × 10-4. For each entry in 
the discrete set, the mutual information is 
computed numerically and an exhaustive search 
is executed to find β*. But we have found β* 
through equation (19) exactly. 

(iii) The optimum mass point spacing is 
also presented in Fig. 2 for average optical 
power P = 1. It is obvious that the mass point 
spacing should decrease with SNR as we have 
seen before in [1,2,3,5,6] and Fig. 2 confirms 
this fact too. ℓ* is approximated as a linear 
function of SNR in logarithmic domain in [1], 
but our ℓ* is linear just in the range of SNRs 
(−5 to 5 dB) and out of this range it will be 
nonlinear.  

(iv) Fig. 3 shows the obtained upper bound 
versus SNR. At low SNRs there is a great gap 
between our upper bound and the upper bound 
in [1] as CU. But at high SNRs our upper bound 
becomes better, and at very high SNRs e.g. 
SNR > 17 dB, our upper bound becomes tighter 
than CU. It means that our upper bound has 
faster convergence behavior than CU at very 
high SNRs. 

(v) In comparison with the upper bound 
obtained in [9] i.e. MU, our upper bound is 
tighter than MU at SNRs > 15 dB. However our 
upper bound has a simple analytic form. 

(vi) The upper bound in [10] i.e. LMWU 
which is the modified version of MU is tighter 
than our upper bound at both low and high 
SNRs but LMWU is computed through a 
complicated expression and it is not clear how 
the parameters in the expression are chosen, in 

contrary to our upper bound that has a simple 
analytic form. 

4. Conclusion 

In this paper, we determined a new upper 
bound for the capacity of FSO channels by 
using a simple mathematical inequality and the 
FH work. Then by maximizing the upper bound 
over all the input parameters (βs) we found a 
third order equation for β* as the optimum β. 
Our equation (i) determines β* exactly, in 
contrary to the FH work where β* is found 
numerically, and also, (ii) is consistent with the 
estimated equation for β* in the FH work. Our 
upper bound is shown to be tighter than the 
proposed upper bound in the FH work that is 
found through sphere packing argument at very 
high SNRs. Our upper bound is tighter than the 
upper bound MU at SNRs > 15 dB and has a 
simple analytic form. The upper bound LMWU 
which is the modified version of MU is tighter 
than our upper bound at both low and high 
SNRs, but LMWU is computed through a 
complicated expression and it is not clear how 
the parameters in the expression are chosen, in 
contrary to our upper bound that has a simple 
analytic form. 
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