یک روش آگاه از هزینه برای ترکیب خدمات ابری به کمک یک الگوریتم ترکیبی

نوع مقاله: مقاله پژوهشی فارسی

نویسندگان

1 باشگاه پژوهشگران جوان و نخبگان، دانشگاه آزاد اسلامی، واحد تبریز، تبریز، ایران

2 استادیار، دانشگاه آزاد اسلامی، واحد تبریز، گروه مهندسی کامپیوتر، تبریز، ایران

چکیده

رایانش ابری به عنوان روش جدیدی از محاسبات مطرح می‌شود که در آن منابع مقیاس پذیر هستند و به صورت مجازی خدمتی را با استفاده از بستر اینترنت فراهم می‌کنند. در رایانش ابری، نیاز کاربر به منابع ابری اغلب به گونه‎ای است که یک خدمت به تنهایی پاسخگوی نیاز کاربر نیست و برای برآورده کردن درخواست کاربر نیاز است تا خدمات با هم ترکیب شوند. روش‎هایی که قبلا ارائه شده بودند دارای مشکلاتی از قبیل عدم بررسی هزینه، انرژی مصرف شده و ارائه نکردن چارچوبی برای استفاده از کمترین تعداد ابرها برای جوابگویی به درخواست کاربر بودند. بنابراین روش پیشنهادی در این مقاله ترکیب الگوریتم مورچگان با الگوریتم ابر پایه جهت رفع این مشکلات است. در این روش، در ابتدا ترکیب‌های ابری که قابلیت پاسخگویی به درخواست‌های کاربران را دارند به صورت صعودی بر حسب تعداد ابرهای موجود در خدمات ابری مرکب مرتب می‌شوند، سپس الگوریتم مورچگان به ترتیب از هر دسته ترکیب ابری مناسب را انتخاب می‌کند. نتایج بدست آمده نشان می‌دهد که روش پیشنهادی می‌تواند انرژی مصرف شده و هزینه را بهبود بخشد.

کلیدواژه‌ها


1]             N. J. Navimipour and F. S. Milani, "A comprehensive study of the resource discovery techniques in Peer-to-Peer networks," Peer-to-Peer Networking and Applications, vol. 8, pp. 474-492, 2015.

[2]           Y. Charband and N. J. Navimipour, "Online knowledge sharing mechanisms: a systematic review of the state of the art literature and recommendations for future research," Information Systems Frontiers, pp. 1-21, 2016.

[3]           S. Asghari and N. J. Navimipour, "Service Composition Mechanisms in the Multi-Cloud Environments: A Survey," International Journal of New Computer Architectures and their Applications (IJNCAA), pp. 40-48, 2016.

[4]           S. Asghari and N. J. Navimipour, "Review and comparison of meta-heuristic algorithms for service composition in cloud computing," Majlesi Journal of Multimedia Processing, vol. 4, 2016.

[5]           E. Ghanbari and A. Shakery, "A new algorithm based on ensemble learning for learning to rank in information retrieval," Iranian Communication and Information Technology, vol. 7, pp. 67-86, 2016.

[6]           A. Souri and N. J. Navimipour, "Behavioral modeling and formal verification of a resource discovery approach in Grid computing," Expert Systems with Applications, vol. 41, pp. 3831-3849, 2014.

[7]           P. Mell and T. Grance, "The NIST definition of cloud computing," National Institute of Standards and Technology, 2011.

[8]           E. Traudt and A. Konary, "Software as a service taxonomy and research guide," Tech-nical report, vol. 601, 2005.

[9]           S. Zhang, H. Yan, and X. Chen, "Research on key technologies of cloud computing," Physics Procedia, vol. 33, pp. 1791-1797, 2012.

[10]         D. Zissis and D. Lekkas, "Securing e-Government and e-Voting with an open cloud computing architecture," Government Information Quarterly, vol. 28, pp. 239-251, 2011.

[11]         S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi, "Cloud computing—The business perspective," Decision Support Systems, vol. 51, pp. 176-189, 2011.

[12]         C. Seo, Y. Han, H. Lee, and C. Lee, "Implementation of cloud computing environment for discrete event system simulation using service oriented architecture," in 2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, 2010, pp. 359-362.

[13]         T. Ercan, "Effective use of cloud computing in educational institutions," Procedia-Social and Behavioral Sciences, vol. 2, pp. 938-942, 2010.

[14]         A. Ghazizadeh, "Cloud Computing Benefits and Architecture in E-Learning," in 2012 IEEE Seventh International Conference on Wireless, Mobile and Ubiquitous Technology in Education, 2012, pp. 199-201.

[15]         F. Zhou, F. Cheng, L. Wei, and Z. Fang, "Cloud Service Platform-Hospital Information Exchange (HIX)," in e-Business Engineering (ICEBE), 2011 IEEE 8th International Conference on, 2011, pp. 380-385.

[16]         S. Mason and E. George, "Digital evidence and ‘cloud’ computing," Computer Law & Security Review, vol. 27, pp. 524-528, 2011/09/01/ 2011.

[17]         W. Wang, G. Zeng, D. Tang, and J. Yao, "Cloud-DLS: Dynamic trusted scheduling for Cloud computing," Expert Systems with Applications, vol. 39, pp. 2321-2329, 2012.

[18]         R. Tang, Y. Yue, X. Ding, and Y. Qiu, "Credibility-based cloud media resource allocation algorithm," Journal of Network and Computer Applications, vol. 46, pp. 315-321, 2014.

[19]         S. Son, G. Jung, and S. C. Jun, "An SLA-based cloud computing that facilitates resource allocation in the distributed data centers of a cloud provider," The Journal of Supercomputing, vol. 64, pp. 606-637, 2013.

[20]         Q. Yu, L. Chen, and B. Li, "Ant colony optimization applied to web service compositions in cloud computing," Computers & Electrical Engineering, vol. 41, pp. 18-27, 2015.

[21]         G. A. E.-N. A. Said, A. M. Mahmoud, and E.-S. M. El-Horbaty, "A comparative study of meta-heuristic algorithms for solving quadratic assignment problem," arXiv preprint arXiv:1407.4863, 2014.

[22]         S. Asghari and N. J. Navimipour, "Nature inspired meta‐heuristic algorithms for solving the service composition problem in the cloud environments," International Journal of Communication Systems, p. e3708, 2018.

[23]         H. Kurdi, A. Al-Anazi, C. Campbell, and A. Al Faries, "A combinatorial optimization algorithm for multiple cloud service composition," Computers & Electrical Engineering, vol. 42, pp. 107-113, 2015.

[24]         G. Zou, Y. Chen, Y. Yang, R. Huang, and Y. Xu, "AI planning and combinatorial optimization for web service composition in cloud computing," in Proc international conference on cloud computing and virtualization, 2010, pp. 1-8.

[25]         N. H. Rostami, E. Kheirkhah, and M. Jalali, "An Optimized Semantic Web Service Composition Method Based on Clustering and Ant Colony Algorithm," arXiv preprint arXiv:1402.2271, 2014.

[26]         D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness, et al., "Bringing semantics to web services: The OWL-S approach," in International Workshop on Semantic Web Services and Web Process Composition, 2004, pp. 26-42.

[27]         S. Asghari and K. Azadi, "A reliable path between target users and clients in social networks using an inverted ant colony optimization algorithm," Karbala International Journal of Modern Science, 2017.

[28]         S. Asghari and J. Navimipour, "Cloud services composition using an inverted ant colony optimization algorithm," Int. J. Bio-Inspired Comput.(2017, in press) Google Scholar, 2017.

[29]         S. Asghari and N. J. Navimipour, "Resource discovery in the peer to peer networks using an inverted ant colony optimization algorithm," Peer-to-Peer Networking and Applications, pp. 1-14, 2018.