تخصیص پایلوت برای روش‌های تخمین کانال با استفاده از سنجش فشرده در سیستم‌های MIMO انبوه

نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 دانشگاه خواجه نصیرالدین طوسی

2 دانشگاه خواجه نصیر

چکیده

سیستم‌های چند-ورودی چند-خروجی انبوه (mMIMO)، سیستم‌هایی بسیار پربازده برای نسل آینده سیستم‌های مخابراتی هستند. در این سیستم‌ها، داشتن یک روش مناسب برای تخمین کانال به منظور تأمین نرخ بیت بالا و بهره طیفی مناسب، امری ضروری است. سنجش فشرده توزیع‌یافته (DCS) یک روش اصلی در استخراج اطلاعات حالت کانال تنک توأم می‌باشد. در این مقاله، از روش جهت متناوب چند برابر (ADMM) استفاده می‌شود تا اینکه دنباله‌های پایلوت شبه متعامد ایجاد شود و سپس تخمین کانال را براساس DCS انجام شود. در نتایج شبیه‌سازی، توانایی دنباله‌های پایلوت که توسط ADMM تولید شده‌اند برای استخراج CSI کانال تنک توأم نشان داده شده است.

کلیدواژه‌ها


  [1]     L. Chen, A. Liu, X. Yuan, “Structured turbo compressed sensing for massive MIMO channel estimation using a Markov prior,” IEEE Trans. Veh. Technol. vol. 67, no. 5, pp. 4635–4639, Jul. 2018.
  [2]     P. Cheng, Z. Chen, Y. Rui, Y. J. Guo, L. Gui, M. Tao, Q. T. Zhang, “Channel estimation for OFDM systems over doubly selective channels: A distributed compressive sensing based approach,” IEEE Trans. Commun., vol. 61, no. 10, pp. 4173–4185 Nov. 2013.
  [3]     Y. Nan, L. Zhang, and X. Sun, “Efficient downlink channel estimation scheme based on block-0structured compressive sensing for TDD massive MU-MIMO systems,” IEEE Wireless Commun. Lett., vol. 4, no. 4, pp. 345–348, Aug. 2015.
  [4]     X. He, R. Song, W. P. Zhu, “Pilot allocation for sparse channel estimation in MIMO-OFDM systems,” IEEE Trans. Circuits Syst. II, Exp. Briefs. vol. 60, no. 9, pp. 612–616, Oct. 2013.
  [5]     X. He, R. Song, W. P. Zhu, “Pilot allocation for distributed-compressed-sensing-based sparse channel estimation in MIMO-OFDM systems,” IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 2990–3004, May 2016.
  [6]     C Qi, G Yue, L Wu, N Arumugam, “Pilot design for sparse channel estimation in ofdm-based cognitive radio systems,” IEEE Trans. Veh. Technol., vol. 63, no. 2, pp. 982–987, Feb. 2014.
  [7]     R. Mohammadian, A. Amini, and B. Hossein Khalaj, “Compressive Sensing-Based Pilot Design for Sparse Channel Estimation in OFDM Systems,” IEEE Communications Letters, vol. 21, no. 1, pp. 4–7, Jan. 2017.
  [8]     A. Waseem, A. Naveed, S. Ali, M. Arshad, H. Anis, and I. M. Qureshi, “Compressive Sensing Based Channel Estimation for Massive MIMO Communication Systems,” Wireless Commun. Mobile Comput., vol. 2019, ID 6374764, pp.15.
  [9]     X. Chao, Z. Jianhua, and Y. Changchuan, “Non-orthogonal pilot pattern for sparse channel estimation in large-scale MIMO-OFDM system,” The J. of China Univ. of Posts and Telecommun., vol. 23, no. 4, pp. 63-68, Aug. 2016. 
[10]     D. Lee, “MIMO OFDM channel estimation via block stage-wise orthogonal matching pursuit,” IEEE Commun. Lett., vol. 20, no. 7, pp. 2115–2118, Aug. 2016.
[11]     T. T. Cai and L. Wang, “Orthogonal matching pursuit for sparse signal recovery with noise,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4680- 4688, Aug. 2011.
[12]     Z. Gao, L. Dai, W. Dai, B. Shim, and Z. Wang, “Structured  compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO,” IEEE Trans. Commun., vol. 64, no. 2, pp. 601-617, Feb. 2016.
[13]     Q. Qin, L. Gui, B. Gong, and S. Luo, ‘‘Sparse channel estimation for massive MIMO-OFDM systems over time-varying channels,’’ IEEE Access, vol. 6, pp. 33740–33751, 2018.
[14]     M.F. Duarte, S. Sarvotham, D. Baron, M.B. Wakin, R.G. Baraniuk, “Distributed compressed sensing of jointly sparse signals,” in Proc. Asilomar Conf. Signals, Syst., Comput. (IEEE, Pacific Grove, 2005), pp. 1537–1541.
 
 
 
 
[15]     P. Cheng, Z. Chen, Y. Rui, Y.J. Guo, L. Gui, M. Tao, Q.T. Zhang, “Channel estimation for ofdm systems over doubly selective channels: a distributed compressive sensing based approach,” IEEE Trans. Commun. vol. 61, no. 10, pp. 4173–4185, Oct. 2013.
[16]     L. Xu, K. Niu, Z. He, W. Xu, Z. Zheng, “MIMO channel estimation based on distributed compressed sensing for LTE-advanced,” in Proc. 9th ICICS. (IEEE, Tainan, 2013), pp. 1–5.
[17]     X. Rao, V. K. N. Lau, “Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems,” IEEE Trans. Signal Process. vol. 62, no. 12, pp. 3261–3271, Dec. 2014.
[18]     T. Zhang, “Adaptive forward-backward greedy algorithm for learning sparse representations,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4689–4708, Jul. 2011.
[19]     Z. Huang, R. Hu, Y. Guo, E. Chan-Tin, and Y. Gong, “DP-ADMM: ADMM-Based distributed learning with differential privacy,” IEEE Transactions on Information Forensics and Security, vol. 15, no. 4, pp. 1002–1012, Jul. 2019.
[20]     M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo “Fast Image Recovery Using Variable Splitting and Constrained Optimization,” IEEE Trans. on Image Processing,vol. 19, no. 9, pp. 2345–2356, Sept. 2010.   
[21]     A. Akbarpour-Kasgari, M. Ardebilipour, “Massive MIMO-OFDM Channel Estimation via Distributed Compressed Sensing,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 376–379, Feb. 2019.
[22]     3GPP, TS 36.101 (V12.9.0), “User equipment radio transmission and reception (Rel. 12),” Oct. 2015.