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Abstract—Chronic myelogenous leukemia (CML) is a kind
of blood cancer, which produces abnormal white blood cells
uncontrollably. Modeling of this type of disease can help for
treatment of it to physicians. In this paper we proposed an
efficient method for CML treatment. In this method, a
nonlinear multivariable system is considered as the plant of
the CML treatment. Then an efficient centralized multi-input
multi-output  proportional and integral (CMIMOPI)
controller is proposed for this system. Results show that
proposed CMIMOPI controller can control CML disease well,
by using low dosage of drugs. Although the real plant is
nonlinear, however the controller has good robustness and
can stabilize the system for various conditions. Simulation
results show that the steady state population of cancer cells at
the end of treatment period is highly reduced and the rate of
cancer improvement is independent from reproduction of
cancer cells.

Keywords—Chronic  Myelogenous  Leukemia (CML)
treatment, Disease Modelling, MIMO system, Centralized
controller, Pl controller.

I. INTRODUCTION

Leukemia is a kind of blood cancer. This disease affects
the production of white blood cells, causing abnormal
white cells to displace existing healthy cells uncontrollably.
These abnormal white cells “overpopulate” the bone
marrow and circulate into the blood stream, which
ultimately leads to cancer [2]. Leukemia has four major
types, Acute Myeloid Leukemia (AML), Chronic Myeloid
Leukemia (CML), Acute Lymphoblastic Leukemia (ALL)
and Chronic Lymphocytic Leukemia (CLL). The leukemia
is called “Lymphocytic”, if the cancerous change occurs in
a type of marrow cell that forms lymphocytes. The
leukemia is called “Myeloid, if the cell change occurs in a
type of marrow cell that normally leads to the formation of
red blood cells, some kind of white blood cells and
platelets. “Acute” type of leukemia progresses quickly and
primarily has effect on the cells that are partly or totally
underdeveloped. “Chronic” leukemia is a slowly progress
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disease, that allows larger number of developed cells to
grow [3]. Statistics indicate that approximately 15-20% of
all cases of leukemia are CML, with a prevalence of 1-1.5
cases per 100,000 persons per year [4].

CML is the result of mutation in the DNA of a single
cell in the bone marrow. Chromosomes, number 9 and
number 22, are abnormal in CML cells. Parts of these two
chromosomes change places with each other. The end part
of chromosome 22 sticks to the chromosome 9. Besides,
the end part of chromosome 9 sticks to the bottom of
chromosome 22.

Chronic, accelerated and blast are three separate phases
of CML. The chronic phase is the longest with averaging
3-5 years. In the course of this phase, cell counts grow
steadily. The length of accelerated and blast phases can last
just a few months. Rapid increase in cell counts is a
characteristic of these two phases that followed by death of
the patient [1]. Since treatments for CML focus on the
chronic phase and also the quantified data of the
accelerated and blast phases is unreliable (because of the
rapid changes in cell counts in these two phases), thus
chronic phase is considered for our model. Most patients
who have CML chronic phase can live good with drug
therapy.

There are two types of drug therapies. One is targeted
therapy such as imatinib, and the other is broad cytotoxic
therapy such as cytarabine. According to the studies,
combination of these two therapies is better than targeted
therapy alone [5, 6]. Since the action of these therapies is
against a broad class of cells, treatments usually results in
severe side effects, e.g. the more common imatinib side
effects include fluid retention (edema), collection of fluid
in the chest (pleural effusion), puffiness around the eyes,
nausea and vomiting, muscle cramps, diarrhea and rash [3]
and the more common cytarabine side effects include
nausea, mouth sores, diarrhea, loss of appetite, skin rash,
redness and itching [7].
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Fig. 1. The process of DNA mutaion.

There are different developed works which studied drug
therapies for cancer disease that involve tumors [8-14].
Recently Maki and Pujo-Menjouet [15] developed a
periodic model for CML. A nonlinear mathematical model
with three non-linear ordinary differential equations
(ODEs) is generated by Moore and Lee [1]. Michor et al.
[16] incorporate treatment of CML by imatinib and cell
lines with resistance to imatinib. They used linear ODEs of
the systems in a four-compartment model. In [17] an
optimal control for treatment of CML has presented.
Neuro-adaptive approach which leads to good results has
been proposed in [2]. Optimal control for resistance and
suboptimal response in CML was showed in [18]. One of
the main drawbacks of these efforts is that they usually use
a high dosage of drugs for their treatments, which leads to
severe side effects. Also in the different conditions, for
example for different patients the proposed systems will be
re-tuned.

In this paper we aimed to propose a system for CML
treatment that uses low dosage of drugs in order to
minimize their side effects and can be applied to different
patients with different parameters. So, in this paper, a
nonlinear multivariable system is considered as the plant of
the CML treatment. Then an efficient centralized multi-
input multi-output proportional and integral (CMIMOPI)
controller is proposed for this system.

The rest of paper is organized as follows. Section 2
presents the nonlinear model of CML and linearization of
it. Section 3 discusses about the stability of the linear
system and designing of the CMIMOPI controller for it.
Section 4 shows some simulation results. Finally, section 5
concludes the paper.

Il. MODEL AND LINEARIZATION
A. Model
The model of CML disease is developed by Helen

Moore and Natasha K. Li [17]. This nonlinear
multivariable system is considered as the plant of the CML
treatment, and it is presented in (1) to (3). In this model,
number of cancer cells is shown by C. T, denotes the naive
T cell population and T, denotes the number of effector T
cells. In (1) to (3) parameters u; and u, are presenting the
dosage of drug treatment, imatinib and cytarabine
respectively. Actually u; and u, are control inputs of the
plant and we use them for controlling the disease. The
initial condition of the differential Equation in t=0 is
assumed as C(0)=10,000, T¢(0)=10, T,(0)=1510 as it is
considered in [17]. The other parameters are described in
Table I. Subtracting u;=0 and u,=1 describe the cancer
dynamic without treatment.

dT, C

d—t” =5, —Uy(t)d Ty — K, T (c_m) @)
daT
—E-a KT, (CLH]) o, (C%n) —u,(d.T 7 CT,
)
o - wORCIEI) by OAC-7CT, @)
TABLE |
PARAMETER DESCRIPTION OF CONSTANTS
IN MODELING EQUATION (1) TO (3) [1].
Parameter Description Unit Range
Sn Source of T, cell/(ul.day) (0,0.5)
n T, death rate day-1 (0,0.5)
n T, differentiantion day-1 (0,0.1)
a, Te proliferation 0,2)
d, T, death rate day-1 (0,0.5)
a, T, recruitment day-1 0,2)
Ve T loss (duo to C) wl/(cell.day) (0,0.1)
T C growth rate day-1 (0,0.5)
d, C death rate day-1 (0,0.8)
Ve C loss (due to Te) wl/(cell.day) (0,0.1)
Crnax Maximum C cell/ul (1.5x10° 4x10°)
n Michaelis-Menten cell/ul (0,1000)
U, u; upper bound 0.9
U, U, upper bound 25
Iy uz lower bound 0
I, u, lower bound
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TABLE Il
PARAMETERS FOR A GENERAL PATIENT “G”
Parameter Sn d, k, an d, a, Ye A Ye d, Cnax n
Value 0.073 0.040 0.001 0.41 0.06 0.2 0.005 0.03 0.005 0.2 3x10° 100
TABLE Il
PARAMETER SENSITIVITY OF MATRIX A
Patient “G” By increasing By increasing By increasing By increasing By increasing
parameter u; uj cr T, T,
0.1878 -0.1009 -0.0102 0.0521 0.0926 0.1861
E'ge”"a'“eAs of matrix -0.0045 -0.2849 -0.0045 -0.0050 -0.0045 -0.0045
-0.4136 -0.5675 -0.4173 -49.8180 -1.3084 -0.4119

In (1) S, denotes the birth of the naive T cells (T,), the
other two terms represent decreasing naive population, one
by u, drug treatment and natural death, and the other by
transforming to the effector T cells. Equation (2) shows
increasing and decreasing effector T cells population. First
term in (2) points to the naive cells transformed to the
effector T cells by a, coefficient. Second term in (2) is a
recruitment term, which it is assumed that a proportion of
effector T cells will recruit other immune cells to aid in
killing CML cells [1]. The two last terms represent
decreasing effector T cell population by u, treatment,
natural death and cancer cells (C). In (3) first term shows
the proliferation of cancer cells with r.Ciy(Cpax/C)
coefficient and death of them by drug treatment (u;). And
the two other last terms represent declining cancer
population, by u, treatment, natural death and effector T
cells.

B. Linearization

To design the controller for the nonlinear plant,
linearization of the system is needed. Linear system is
obtained from the Jacobian matrix of the system (More
information is in [19]). This system has three different
variables and two inputs. We consider the plant as a MIMO
system with two control inputs and two outputs. After
linearization and simplification the A, B, C and D matrixes
calculated as in (4).
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Parameters C*, T.*, T.*, u;* and u,* denote operating
points for each variable. Between two outputs T, and C, C
is more important than T, since C shows the number of
cancer cells and the progress of diseases. These variable
matrices become numerical by selecting typical parameters
for operating point and considering a general patient
proposed in [1] (Table I11). Numerical matrices for patient
“G” are presented in (5).

Although accordance to the recommendation of a
specialist reasonable values are chosen for the operating
point, but the system presented in (5) is extremely sensitive
to the selection of the operating points. Variables u,*, u;*,
C*, T¢* and T,* have important effect on eigenvalues of
matrix A respectively. Parameters u,* and u;* have more
effect on the eigenvalues of matrix A, such that they can
displace all the eigenvalues of matrix A to left half plane
(LHP) and stable it, In Table Ill the effect of changing
parameter on the eigenvalues of matrix A is discussed; In
each column just one parameter has changed and the others
are constant (Patient “G” value).

It is visible that by increasing u, , u;" one of the
eigenvalues of A go to the LHP and the system becomes
stable. The other three parameters can displace eigenvalues
of A, but this displacement has no significant effect on
system stability.
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I11. NYQUIST STABILITY AND CONTROLLER DESIGN

In this section firstly, Nyquist diagram of the plant is
investigated, and then a controller for the system is
designed in order to achieve stability and good
performance.

[—0.0045 0 —0.0001 0 -08
A=| 0.0002 -0.4060 -0.0090| B=| 0 -012
0 -05 0.1802 —24.01 -20

010 00
“=lo o } D{o o}
- 1 (5)

A. Nyquist Stability

Since one of the important specifications of each plant is
its stability, Nyquist diagram has been studied for our CML
model stability. Our plant is a MIMO system therefore we
use MIMO Nyquist [20]. Transfer function of plant (7) is
calculated from (6).

G(s)=C(sl -A)'B+D ©)
G(s) = 1 |-8.327x10™"s* +0.2157s +0.0009708
den|  -0.12s? +0.2005s +0.0009352

—24.02s* —9.865 —0.04388
—20s” —8.15s -0.03619

,den = s® +0.2303s” —0.07663s —0.0003494 (7)

Two eigenvalues loci (More information is in [21]) are
calculated from (8).

det(Al -G(s)) =0 8)

Since G(s) is a MIMO system, calculation of its poles is
not as simple as Single-Input Single-Output (SISO)
systems (More information is in [22]). The place of the
poles can be calculated from den=0, but their repeating is
not gathered. Since dimension of matrix A is three so we
conclude that the plant has three poles at maximum. Thus
the poles of G(s) are -0.0045, -0.4136 and +0.1878 and
they have not been repeated. One right half plain (RHP)
pole makes the open loop system unstable. Eigenvalues
loci of G(s), 4, and A, are showed in Fig. 2. Because the
plant has one RHP pole, then in the Nyquist (9), p
parameter is one. Since we want to have a stable close loop
system, therefore z parameter in (9) should be zero; thus n=
-1 which means that the diagram should circle point -1
counter clock wise once.
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But as it is showed in Fig. 2 diagram doesn’t circle point
-1, which means that the close loop system is unstable.
Therefore we need a negative gain in control loop in order
to stabilize the system. According to Fig. 2 this gain should
be between -2 and -0.01 approximately. We consider Ky= -
0.11 (10) for close loop system with negative feedback

(Fig. 3).
|

« |01
P71 o0

Fig. 4 shows the Nyquist diagram which circle point -1
once counter clock wise. This leads to close loop system be
stable. Simulations show that not only the unstable linear
system would be stable, but also the nonlinear system
would be stable using K, from (10). Although close loop
stability is an important issue, the real objective of control
is to improve performance [23]. So we design a CMIMOPI
controller in order to improve the performance of the close
loop nonlinear system and overcome uncertainties in
parameter for different patients. Thus the final controller is
robust and can deal with nonlinearities and uncertaininties
of the plant

0

_o. (10)

B. Controller Design

According to (4) our model for CML is MIMO, also the
parameters of the model are different for various patients
and can change the stability of the system; in addition real
system is nonlinear. Pl controller has robustness against
changing parameters and more performance than the
simple proportional controller. Some methods for
designing a decentralized MIMOPI controller have been
presented, in [24-27]. These methods usually design PI
controller according to decentralized control concept, but
since two channels of out plant are not decoupled our
control method should be centralized (CMIMOPI), which
is more complicated to design. Fig. 5 shows a MIMO
feedback structure with a CMIMOPI controller. The
controller which is applied to the system is presented in
(11), the parameter of the controller are obtained by
considering two properties together: Robustness of the
close loop system and decreasing using drug dosage in
treatment period.

CMIMOPI =

37+%

S
0.0005
S

1O+E

100+%

S

(11

26+

In Fig. 5, parameter Kpq is a simple negative gain for
tuning loop gain. CMIMOPI controller presented in (11)
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can improve cancer disease and decrease number of cancer
cells in a short period of treatment.

[&]
ol o+

2]

G11 912]
21 G22

10000

Patient "G"
Patient "A"

9000 [

8000

7000

6000

5000

4000

Cancer cell population
P

3000

2000

1000

0

0 50 100 150

Day
Fig. 6. Cancer cell population for patient “A” and “G” under
treatment according to CMIMOPI controller

200 250

o ! T

=) s Patient "G"

S I e Patient "A" |7

It

]

3 0.5

2

£

S

E

0 50 100 150 200 250

Day

N 25 X -

® k Patient "G"

g L R R R e Patient "A"

S 2k ||

o ),

o %

o N

c \

S 1.5 \\

S

g 1 b

S 0 50 100 150 200 250
Day

Fig. 7. Imatinib and cytarabine dosage for patient “A” and “G”
under treatment

IV. SIMULATION AND RESULTS

In this section, we control cancer disease for different
patients.

A. Simulation of a General Patient and a More Aggressive
One

A general patient “G” [1], and a more aggressive patient
“A” [17] are considered. The parameters of both patients
are presented in Table IV.

Population of cancer cells for patient “A” without
treatment will increases up to 50,000 [17] and it causes
patient die. While the population of cancer cells under
treatment according to the proposed CMIMOPI controller
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TABLE IV
PARAMETERS OF PATIENTS “G” AND “A”

Parameter Sn d, ky, an d, a, Ye Te Ye d, Crnax n
Patient “G” 0.073 0.040 0.001 0.41 0.06 0.2 0.005 0.03 0.005 0.2 3x10° 100
Patient “A” 0.29 0.35 0.066 0.39 0.4 0.65 0.079 0.011 0.058 0.012 1.6 x 10° 140

TABLEV
PARAMETERS OF PATIENTS “M”, “N”, “O” AND “P”

Parameter Sn d, ky, an d, a, Ye Te Ye d, Crnax n
Patient “M” 0.35 0.12 0.1 0.71 0.005 0.023 0.1 0.023 0.01 0.19 2.5 x 10° 20
Patient “N” 0.073 0.39 0.01 0.041 0.48 0.7 0.05 0.23 0.08 0.42 4 x 10° 800
Patient “O” 0.45 0.21 0.07 0.01 0.05 0.23 0.002 0.045 0.043 0.148 3.2 x 10° 364
Patient “P” 0.045 0.012 0.01 0.51 0.15 0.83 0.02 0.001 0.003 0.048 3.2 x10° 541

will decrease fewer than 2,000, which is showed in Fig. 6.

Also disease of patient “G” is improved in almost less than
50 days. (Fig. 6)

The CMIMOPI controller is tuned such that uses
cytarabine (up) less than imatinib (u,), since cytarabine
cannot be used high dosage in practice. Dosage of each
drug for controlling cancer of patient “G” and “A” is
showed in Fig. 7. Since disease is aggressive in patient “A”,
imatinib (u,) is used to the end period of treatment. And
cytarabine (u,) is used for about 65 days with a decreasing
trend. But for patient “G” cytarabine is used just for less
than 5 days and imatinib treatment continued for about 50
days and after that, using of it will be continued with a very
low dosage to the end period of treatment.

We claim that our controller has better result for patient
“A” than optimal controller proposed in [17]. Since their
optimal controller uses a high dosage of cytarabine (uy) for
treatment which has side effects, while our CMIMOPI
controller uses cytarabine fewer. Nevertheless the results of
these two controllers are almost the same and cancer cell
population decrease nearly to the 2,000 after 250 days for
both two controllers. On the other hand our controller is
robust and can be applied to different patients with
different parameters, while their controllers is dependent on
patient’s parameters and should be designed for each
patient separately.

The other output of the system (Fig. 8) which is not as
important as the first one is effector T cell population.
Effector T cell population decrease to zero among the
treatment very quickly which has three major reasons
according to the (2). First, it will be decreased as the
disease improves and finally after diminishing cancer cell
population, it will become zero. Second, many of effector
cells are disappeared by cancer cells daily and using
cytarabine (u,) (which is necessary for treatment) destroys
effector cells, too. Last, effector cells don’t have enough
time to be replaced, since their replacement is much less
than their deaths. Fig. 8 shows effector cell populations for
patient “A” and “G”.
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B. Simulation of Patients with Different Parameters

The optimal controller proposed in [17], is dependent on
patient’s parameters, But the designed CMIMOPI
controller is independent from patient’s parameters. So we
applied our controller for many different patients to ensure
its robustness and performance. Results showed that it
operates well for different patients, and the disease
improved in few days.

For example four different patients “M”, “N”, “O” and
“P” with different parameters are presented in Table V. We
have selected these patients such that show different
possible situations. For example, look at s, for patients
“M”, “N”, “O” and “P”, it has values from 0.045 to 0.45
(Table V). We know that s, allowed range is (0, 0.5)
according to Table I. So, for patients “M” to “P” s, has
various values which approximately cover all of its allowed
range. By examining Table V, it is obvious that each
parameter of patients “M” to “P” approximately cover all
of its allowed range, (i.e. presented in Table I). Fig. 9 and
Fig. 10 show the system’s outputs for patients “M” to “P”
under treatment with CMIMOPI controller.

Patient “M” and “P” has better health. Although number
of cancer cells decreases with a slow rate for patient “P”,
but number of cancer cells decreased to zero for both
patients “M” and “P” and the drug treatment stopped after
10 days for patient “M” and after 100 days for patient “P”
(according to Fig. 11). Patients “N” and “O” have worse
health. Although number of cancer cells decreases with fast
trend in first days of treatment for both patients, but some
cancer cells remained for patient “N” and “O” after 250
days and the drug treatment continued (just imatinib (uy)).

The results of simulating these patients show that not
only our controller can control cancer disease in different
patients well, but also it uses a low dosage of cytarabine
(up) which is indeed practical. Fig. 11 shows the dosage of
each drug which is used for treatment of patients “M” to
“P>.
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Fig. 8. Effector T cell population for patient “A” and “G” during
first days

C. Effect of r; and d. on Patient Health

In this section we study the effect of parameters r; and d.
on system’s response. Since the system is nonlinear, it is
not easy to predict its behavior. But parameters r. and d
has more effect on the system behavior than the other
parameters, as it is mentioned in [1]. Many simulations for
different patients show that the overall behavior of system
can be predicted using these two parameters, as follows:

1) First point, steady state population of cancer cells

We introduce an important ratio which determines the
steady state population of cancer cells at the end of
treatment period. This ratio is presented in (12).

f'e

Reproduction Ratio for cancer cells = RRc = (12)

c

Whatever reproduction ratio of cancer cell (RR¢) increases,
the number of cancer cells at the end of the treatment
period is bigger (other parameters are constant). On the
other hand, whatever this ratio decreases, the number of
cancer cells at the end of the treatment period is smaller. In
order to show the effect of RR¢ on the number of the cancer
cells at the end of treatment period, we consider “P” and
other three different patients (“P1”, “P2” and “P3”) which
has the same parameters as patient “P” except r. and d..
The parameters r. , d. and RR¢ are presented in Table VI
for these patients.

Fig. 12 shows the result of simulation for patients “P”,
“P1”, “P2” and “P3”. As you see parameter RR¢ of patients
“Pr, “P1”, “P2” and “P3” is 0.02, 0.1, 0.2 and 0.5
respectively, and according to Fig. 12.b the number of
cancer cells at the end of treatment period is nearly 0, 70,
650 and 1750 respectively. These results show that (12) is
an important ratio and confirms our discussion in firs point
(i.e. whatever reproduction ratio of cancer cell (RR¢)
increases, the number of cancer cells at the end of the
treatment period is bigger and vice versa).
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Fig. 11. Imatinib and cytarabine dosage for patient “M” to “P”
under treatment with proposed CMIMOPI controller

2) Second point, the rate of disease improvement at the
beginning of treatment

It is obvious that number of cancer cells decreases in
different patients with different rates at the beginning of
treatment. The question is that “Among r., d. and the other
parameters, which one has critical effect on this rate? And
causes the number of cancer cells achieves to its steady
state, rapidly?”
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TABLE VI

PARAMETER 1., d. AND RR_ FOR PATIENTS “P” TO “P7”

Patient r. d. RR,
P 0.001 0.048 0.02
P1 0.0048 0.048 0.1
P2 0.0096 0.048 0.2
P3 0.024 0.048 0.5
P4 0.001 0.0048 -
P5 0.0001 0.0048 -
P6 0.02 0.48 -
P7 0.2 0.48 -

Rate of disease improvement at the beginning of treatment
is approximately dependent on magnitude of parameter d,
and is independent from parameter r. and other parameters.
Whatever d. parameter is bigger, rate of disease
improvement is better, and vice versa. In order to show this
effect, Patients “P”, “P3”, “P4”, “P5”, “P6” and “P7” from
Table VI are considered. Fig. 13 shows the results of
simulation for these patients.

In Fig. 13, we need a criterion in order to compare the rate
of improvement of each patient. Let’s consider the number
of days, which cancer cell population of each patient
achieved from 10,000 to 3,000 as a criterion for rate of
disease improvement.

Consider patients “P” and “P3”. Parameter d. of these
two patients is the same, but their r, parameter is 0.001 and
0.024 respectively (Table VI). As Fig. 13.b shows, cancer
cell population of both patients achieved from 10,000 to
3,000 in the same period of time (nearly 25 days). This
result confirms our discussion in second point (i.e. the rate
of disease improvement for these two patients is dependent
on parameter d. and independent from parameter r. at
beginning period of treatment). Also for patients “P4” and
“P5” parameter d; is the same, but their r. parameter is
different. Fig. 13.b shows, cancer cell population of both
patients achieved to 3,000 in the same period of time
(nearly 185 days). Patients “P6” and “P7” have the same
result too (Fig. 13.b). All these results show independency
of disease improvement rate from parameter r., which
confirm our discussion in second point.

On the other hand, second point says that “whatever d,
parameter is bigger, rate of disease improvement is better”.
Consider patients “P4”, “P” and “P6”. Parameter d. for
these three patients is 0.0048, 0.048 and 0.48 respectively
(Table VI). Fig. 13 shows that the rate of disease
improvement at the beginning of treatment for these three
patients is influenced by their d, parameter. It is obvious
that whatever parameter d. is bigger, the rate of disease
improvement is better and cancer cells achieve to their
steady state rapidly. And it is completely independent from
parameter re.

Now let’s take a look at section 4.1. Parameter RR¢ for
patients “G” and “A” is 0.15 and 0.92 respectively
(according to Table 1V). According to first point the cancer
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cell population for patient “G” should be much less than
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patient “A” at the end of treatment period (see Fig. 6). On
the other hand parameter d. for patients “G” and “A” is 0.2
and 0.012 respectively (Table V). And due to second point
the rate of disease improvement at the beginning of
treatment for patient “G” should be much better than “A”
(see Fig. 6). These two points confirm that disease of
patient “A” is more aggressive than patient “G”.

V. CONCLUSION

In this paper a multivariable nonlinear model is
considered for CML disease. The stability of the system is
investigated from Nyquist diagram. Our goal is to improve
the disease by decreasing cancer cell populations, and
using low dosage of drugs. So, an efficient centralized
multi-input  multi-output  proportional and integral
(CMIMOPI) controller method is proposed for this system.
The CMIMOPI controller, can overcome uncertainties in
patient parameters. Using CMIMOPI controller not only
causes the nonlinear system to be stable, but also improves
the performance of disease treatment. Simulations show
that the proposed CMIMOPI method has a good robustness
against parameter uncertainties. Also the proposed
controller uses fewer dosage of drugs than the other
controllers, while can reduces the cancer cell population as
well as the other works. Finally, we studied behavior of the
system by expressing two points. In first point, we define
the reproduction ratio for cancer cells (RRc). This ratio can
determine the steady state population of cancer cells after
treatment. Then in second point, we showed that the rate of
disease improvement in the beginning of treatment is
dependent on death rate of cancer cells (d;), and is
independent from reproduction of cancer cells (r.).

In order to implement the proposed controller and
practical usages, the information obtained from daily blood
samples can be used. Using this information, the number of
cancer cells and effector cells feedbacks to the controller,
and then the controller determines the dosage of two
different drugs which should be used by patients.
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