Journal of Soft Computing and Information Technology (JSCIT)

Vol. 5, No. 1, Springer 2016

ISSN: 2383-1006

A New Approach to the Quantitative
Measurement of Software Flexibility

Abbas Rasoolzadegan
Ferdowsi University of Mashhad, Mashhad, Iran, rasoolzadegan@um.ac.ir

Abstract—Software flexibility is the ease with which a
software system can be modified for use in applications or
environments other than those for which it was specifically
designed. Software flexibility is not an absolute term. It is an
important aspect of software quality. Quantifying software
flexibility is increasingly becoming necessary. We have
recently proposed a new approach (referred to as SDAFexgRrel)
to the development of reliable yet flexible software. In this
paper, a new approach is proposed to quantitatively measure
the flexibility of the software developed using SDAFgexgrel
thereby making precise informal claims on the flexibility
improvement. Moreover, the effectiveness of the proposed
measurement approach is empirically investigated in the
multi-lift case study that has already been conducted to
demonstrate the feasibility of SDAgexgrel- The results confirm
the flexibility improvement promised by SDAFexgrel-

Keywords— design patterns,
measurement, software metrics.

flexibility, quantitative

I. INTRODUCTION

Flexibility can be defined as the ability of a system to
respond to potential internal or external changes affecting
its value delivery, in a timely and cost-effective manner.
Thus, flexibility for an engineering system is the ease with
which the system can respond to uncertainty in a manner to
sustain or increase its value delivery [11], [18]. Uncertainty
is a key element in the definition of flexibility. Uncertainty
can create both risks and opportunities in a system, and it is
with the existence of uncertainty that flexibility becomes
valuable.

Rapid technological developments pervade every aspect
of daily life, having a direct effect on the software we use.
Every element of the software’s operational environment is
in a state of constant flux: Frequent changes in the
hardware, operating system, cooperating software, and
client’s expectations are motivated by performance
improvements, bug-fixes, security breaches, and attempts
to assemble synergistically ever more sophisticated
software systems [7]. Classic and contemporary literature
in software design recognizes the central role of flexibility
in software design and implementation. Structured design,

12

modular design, object-oriented design, software
architecture, design patterns, and component-based
software engineering, among others, seek to maximize
flexibility. Textbooks about software design emphasize the
flexibility of particular choices, thereby implying the
superiority of the design policy they advocate. But despite
the progress made since the earliest days of software
engineering, from the ‘software crisis’ through ‘software’s
chronic crisis’, evolution (formerly ‘maintenance’) of
industrial software systems has remained unpredictable and
notoriously expensive, often exceeding the cost of the
development phase. Flexibility has therefore become a
central concern in software design and in many related
aspects in software engineering research [8], [10], [16-17],
[19].

An artifact is hardly flexible in absolute terms [1-2].
Instead, it may be flexible towards a specific class of
changes and inflexible towards another one. Predicting the
class of changes is the key to understanding software
flexibility. Moreover, an artifact A is more flexible than
another artifact B towards a particular evolution step if the
number of changes required for A is less than those
required for B. ‘Evolution step’ is regarded as the unit of
evolution with relation to a particular class of changes in
design or implementation [3-4].

We have recently proposed a Software Development
Approach (SDA). This approach, referred to as SDAFexgrel
in this paper, promises to develop reliable yet flexible
software [5]. In SDAfexsre, formal (Object-Z) and semi-
formal (UML) models are transformed into each other
using a set of bidirectional formal rules. Formal modeling
and refinement in Object-Z ensure the reliability of
software. Visual models (UML diagrams) facilitate the
interactions among stakeholders who are not familiar
enough with the complex mathematical concepts of formal
modeling methods. Applying design patterns to visual
models improves the flexibility of software. The
transformation of formal and visual models into each other
through the iterative and evolutionary process, proposed in
[5], helps develop the software applications that need to be

A New Approach to the Quantitative Measurement of Software Flexibility

................................ Abbas Rasoolzadegan

highly reliable yet flexible. The workflow of SDAFgrel IS
illustrated in Fig. I.

In this paper, we quantitatively measure the flexibility
improvement promised by SDArexgre and empirically
investigate such improvement in the multi-lift case study
that has already been conducted to demonstrate the
feasibility of SDAprewsre.- Reference [6] elaborately
presents the results of applying SDAFexgre t0 the multi-lift
system.

[Firstiteration]

¥ v
Producing the initial Object-Z specification
refining it formally in the phase RAP

Refining the input Object-Z specification
in the phase RAP

[Need to further revision]

[nthiteration,n=1]

)

Visualizing the input Object-Z specification
in the phase VP

Revising the input class diagram using
design patterns & polymorphism in the phase FAP

Formalizing the input class diagram
in the phase FP

[No need to further refinement & revision]

~®

Fig. 1. The workflow of SDAFexgre Using UML activity diagram.

FAP

Ensures flexibility, using SE
principles such as design
patterns and polymorphism

m,*® Revised Artifact

The iterative and evolutionary process illustrated in Fig.
1 continues until a final product with a desired quality is
achieved. Fig. 2 illustrates the details of an iteration of
SDAFexgrel Which consists of the following phases:

Reliability Assurance Phase (RAP) which supports
formal specification and refinement in Object-Z.
Visualization Phase (VP) which transforms Object-Z
models into UML ones.

Flexibility Assurance Phase (FAP) which revises UML
models from the viewpoints of design patterns and
polymorphism.

Formalization Phase (FP) which transforms UML
models into Object-Z ones.

In the phase FAP of the proposed approach, the
flexibility of the software being developed improves using
Software Engineering (SE) principles such as design
patterns. Each design pattern lets some aspect of system
structure vary independently of other aspects, thereby
making a system more robust to a particular kind of
change.

The flexibility of the software developed using
SDAGFxerer 1S directly proportional to the flexibility of
those design patterns used in the phase FAP during the
different iterations of the development process. Therefore,
to quantify the software flexibility, we can quantitatively
measure the flexibility of the design patterns used during
the development process [7].

To quantify flexibility and make precise informal claims
on the flexibility of design patterns, a notion called
‘evolution complexity’ can be used. The complexity of an
evolution step measures how inflexible is the
design/implementation being evolved towards a particular
class of changes. The fewer the changes are required, the
more flexible it is. As illustrated in Fig. 3, software

{ States formally and abstractly the
nformal requirements of the
i stakeholders, using Object-Z

Initial Formal Specification

v

Ist Refined Artifact

/'y
1
.
2nd Revised Artifact P VP
<
FP

Y

2nd Refined Artifact

Ist Revised Artifact

T

Initial Visual Model in UML

: Annotation

Specification or design Artifact

O

T
|
|
v
n,** Refined Artifact

—p Transirionwith a single ransformation

- Transition, using one or more (n-1) rransformations

Fig. 2. A schematic view of an iteration i of SDAgexgrel-

13

Journal of Soft Computing and Information Technology (JSCIT)c..ccociviiiiiiin.. Vol. 5, No. 1, Spring 2016

evolution can be described as the process during which
changes occur in an old problem, which entail changes in
the corresponding design/implementation. To distinguish
between changes in problems and changes in the
corresponding designs/implementations, we refer to the
former as shifts and to the latter as adjustments, jointly
represented as an evolution step [8].

Let us represent the set of problems as p and the set of
designs/implementations as DI. An evolution step can be
represented as a mapping of the combination of the old
problemp,;; € P, the shifted problem pgifeq € P, and
the old design/implementation di,;; € DI into the adjusted
design/implementation diggjysteq € DI. This mapping can
thus be represented as a mathematical function &, called the
evolution function. This function maps each tuple <
Poiar Pshitteds Alota > 10 digajustea; such that:

E:p X pxDI- DI, 1)

EWoiar Dshifteds dioia) = diadjusted

Where the old design/implementation diga
realizes p,iq, and diggjyustea 'ealizes pgpifeq. Therefore,
an evolution step can be formulated as:

€ =<K Potas Dshifteds Aioia > EWorar Pshifteds Aioia) > (2)

We can measure flexibility in terms of the cost of the
evolution process. ‘Evolution cost metric’ (Cyoguies)
measures the cost of executing an evolution step € =«
Pola> Pshifted, diold >, diadjusted > in terms of the
software complexity p(m) of each module m affected by
the adjustments [8-9]:

Clﬁodules (6) = Z

where u can be any software complexity metric such as
LoC (lines of code) or CC (Cyclomatic Complexity), and
AModules(diold, diad]-usted) designates the symmetric
set-difference between the set of modules in di,;; and the
set of modules in diygjysteq, NAMey:

uemy @)

meAModules(digq, diadjusted)

(Modules(digq)\Modules(diggjystea)) Y 4)
(Modules(diggjustea)\Modules(diyiq))

The evolution complexity of a design/implementation di
towards an evolution step (£) is formulated
as O(Chyoquies(E)). If the evolution complexity of di
towards & is fixed and independent of its size
(0(Crroquies(E)) = 1), di is flexible towards &, but if the
evolution complexity of di directly or indirectly grows as a
function of the size of di, it is inflexible towards €. It is
worth mentioning that evolution complexity does not
measure the actual cost of the evolution processes requires,
but how it grows. We can quantify the flexibility of each

design pattern towards specified evolution steps by
calculating the corresponding evolution complexity.

The rest of this paper is organized as follows: In section
two, the evolution complexity of each of the design
patterns that have been used during the development of the
multi-lift system is calculated. Section three discusses the
conclusions.

Old Problem Shifted Problem

old
Design/Implementation

Fig. 3. An evolution step [8].

SOZIEDY
S0ZI|EDY]

Adjusted
Design/Implementation

Il. QUANTIFYING THE FLEXIBILITY OF THE
MULTI-LIFT SYSTEM DEVELOPED USING
SD'A\FLEX&REL
A non-trivial case study, called the multi-lift system, has
been taken as a test bed to evaluate the feasibility of
SDAGFxgre. This system includes parallel, distributed,
embedded, and real-time software. A detailed report of this
empirical study has been presented in [6]. Such a system
needs high reliability and flexibility. As an instance, the
dispatching strategy should be continuously updated for
each lift according to some criteria such as manager
policies and traffic modes, which dynamically change.
These variable factors increase the necessity of designing a
flexible controller having the potential to change the

control strategy dynamically.

In the process of developing the multi-lift system using
SDAFxere, the Observer, Strategy, and Mediator design
patterns have been used during the phase FAP to improve
the system flexibility. In this section, we investigate the
usability of the evolution cost metric for corroborating
informal claims on the flexibility of these design patterns.

A. Observer Pattern

The applications of the Observer pattern are [10]:

* When an abstraction has two aspects, one dependent
on the other. Encapsulating these aspects in separate
objects lets vary and reuse them independently.

» When a change to one object requires changing others,
and you do not know how many objects need to be
changed.

» When an object should be able to notify other objects
without making assumptions about who these objects
are.

If at least one of the above-mentioned conditions holds

in a part of software design, this part has the potential to be

A New Approach to the Quantitative Measurement of Software Flexibility...................ccc.ccooo.. Abbas Rasoolzadegan

revised by the Observer pattern. This pattern defines a one-
to-many dependency between one object named subject
and its dependent objects, referred to as observers. All
observers are notified and updated automatically once the
state of the corresponding subject changes. Fig. 4 illustrates
a part of the initial class diagram of the multi-lift system.
As illustrated in the left column of Fig. 4, there are three
dependencies between the objects of this part:

1. Whenever the traffic information (trafficinfo),
managed by TrafficManager, changes, the value of
traffic features (objects of TrafficFeature) should be
updated using the method MeasureFeature.

2. Whenever the value of a traffic feature is updated, the
suitability percentage of traffic modes (objects of
TrafficMode) should be updated by the method
CalculateSuitabilityPercentage.

3. Once the suitability percentage of a traffic mode is
updated, the method CalculateCurrentTrafficMode of
the class ControlStrategyGenerator determines the
current traffic mode.

According to the applications of the Observer pattern,
this part has the potential to be revised using this pattern.
The right column of Fig. 4 illustrates the revised version. In
the Observer pattern, subjects implicitly know their
observers. Any number of objects can observe a subject.

Observers can be attached to subjects or be detached from
them through the interface of subjects. Each subject sends a
notification to its observers through calling their Update
method whenever a change occurs to make the state of its
observers consistent with its own. Moreover, an observer
may ask the subject for information to reconcile its state
with the state of the subject. This pattern claims that:

It minimizes the coupling between a subject and its
observers. A subject has the list of its observers. These
observers conform to the interface of an abstract class
named Observer. The subject knows only Observer,
not all concrete classes of Observer.

» It provides broadcast communication. A subject
automatically broadcasts notifications to all its
observers. The subject does not know how many
dependent objects exist. It is only responsible for
broadcasting notifications. Therefore, observers can
be added or removed at any time in a flexible way.

According to (3), we use C¢jeses 10 COrroborate the
above-mentioned claims and to make them precise. In other
words, we assume that the cost of adding, removing, or
changing each modular unit (m) is equal to 1 (u(m) = 1).
Moreover, ‘class’ is assumed as the modular unit. Thus, the
evolution cost metric is estimated by calculating the

Before Revision (Traditional design)

TrafficManager ControlStrategyGenerator
-trafficinfo [] : float +CalculateCurrentTrafficMode()
-TinfaChanged() T

|
A |
|
tmr : thd
i TrafficMode
: +CalculateSuitabilityPercentage() : float
! []
TralfficFeature '

+WeasuraFeature() : float

After Revision (Pattern-based design)

TrafficManager
rafficinfo []: float
-TinfoChanged()
+Attach{observer, aspect and interest)
+Dettach(observer)
+Motify()

subject

observers
TrafficFeature
+MeasureFeature() : float
+Aftach(observer, aspect and interets)
+Detachi{observer)

subjects

ControlStrategyGenerator
+CalculateCurrentTrafficMode()
+Update{aspect and interest)

abserver

subjects
TrafficMode
+CalculateSuitabiltyPercentage() ; float
+Attach{observer)
+Detach{observer)

+Motify()
+Update(aspect and interest)

observers [+Motify()
+Update{aspect and interest)

Fig. 4. First revision of the initial class diagram of the multi-lift system using the Observer pattern.

15

Journal of Soft Computing and Information Technology (JSCIT)c..ccociviiiiiiin.. Vol. 5, No. 1, Spring 2016

number of the classes that are added, removed, or adjusted complex, algorithm-specific data structures.
as a result of the evolution. The results of this analysis are e A class defines many behaviors, and these appear as
summarized in Table 1. multiple conditional statements in its operations.
Instead of many conditionals, move related
TABLE | conditional branches into their own Strategy class.

THE COMPLEXITY OF EVOLVING THE OBSERVER PATTERN VS.
TRADITIONAL DESIGN TOWARDS SHIFTS IN OBSERVERS AND SUBJECTS If at least one of the above-mentioned conditions holds
in a part of the initial design of software, this part has the

potential to be revised by the Strategy pattern. This pattern

Evolution step Change/Add/Rem Change/Add/Remove
ove observer subject

Design policy configures a class named context with one of several

Observer pattern o) o(1) b_ehawors. Fig. 5 |IIusj[ra_tes another part _of the |n|t|a}l clas_s

diagram of the multi-lift system. As illustrated in this

. : 0(8 x |Subjects|) 0(8 x |Observers|) figure, the central controller (the class CentralController)
Traditional design 0<0<1 0<0<1 i

(‘anti-pattern”) = = contains an external request allocator (the class

ExternalRequestAllocator). The role of such an allocator is
to select the most suitable lift to respond to the current
external request according to some parameters such as
current values of the evaluation criteria (objects of the class
EvaluationCreteria).

The results show that the complexity of evolving the
Observer pattern or each Observer-based design towards
shifts in observers (€;) and subjects (&,) is fixed (0(1))
because a subjects knows only the abstract class of its
observers, not all its concrete observers. Therefore, we can
conclude that the Observer pattern as well as each design
based on this pattern (such as the design illustrated in the
right column of Fig. 4) is flexible towards both €, and &,.
As shown in Table 1, the evolution complexity of a
traditional design (such as the design illustrated in the left
column of Fig. 4) towards &€, and &, is proportional to the
number of subjects (8 X |Subjects|) and observers
(8 x |Observers]|), respectively. As a result, it is inflexible
towards both &; and &,.

There are different strategies to respond to external
requests according to various parameters such as managers’
policies (the association class ManagerPolicy) and the
current traffic mode. These strategies need to change at run
time according to values of the above-mentioned
parameters. In order to meet the required flexibility for
changing these strategies at run time, this part of the class
diagram has been revised based on the Strategy pattern.
The Strategy design pattern claims that:

B. Strategy Pattern

We can use the Strategy pattern when [10]: o |t provides a family of algorithms and behaviors as
e Many related classes differ only in their behavior. hierarchies of strategy classes for contexts to extend
Strategies provide a way to configure a class with one reusabllle. _ _
of many behaviors. e It provides an alternative for subclassing. It
e You need different variants of an algorithm. For encapsulates various algorithms in distinct strategy
example, you might define algorithms reflecting classes. This makes the algorithms have the ability to
different space/time trade-offs. Strategies can be used change or extend independently of the contexts easily.
when these variants are implemented as a class e It eliminates conditional statements that are used for
hierarchy of algorithms. the selection of the desired behavior by encapsulating
e An algorithm uses data that clients should not know behavior in discrete strategy classes. _
about. Use the Strategy pattern to avoid exposing To measure the flexibility of the strategy design pattern,
Before Revision (Traditional design) After Revision (Pattern-based design)
CentralController
[+ TurnCffFloorBut()
CentralController 1 centralcontroller
+TurnCfiF loorBut ()
1 centralcontroller 1 ExtermalReqguestAllocator
T strategy +AliocateExternalRequest() - int
! ExternalReq
extreqalc +AllocateExternalRequest() : int SimpleAllocator AdvancedAllocator
: +AllocateExternalRequest() : int +AllocateExternalRequest() : int
: i
v =° SmartAllocator :
EvaluationCriteria + AllocateExternalRequest(] ; int !

ec

EvaluationCriteria

Fig. 5. Second revision of the initial class diagram of the multi-lift system using the Strategy pattern.

16

A New Approach to the Quantitative Measurement of Software Flexibility...................ccc.ccooo.. Abbas Rasoolzadegan

we assume that the cost of adding, removing, or changing a
modular unit m is proportional to the number of those
statements of m that are added, removed, or adjusted as a
result of the evolution (u(m) = LoS (Lines of
Statements)). Moreover, ‘class’ is assumed as the modular
unit. Thus, the evolution cost metric is estimated by
calculating the number of the statements that are added,
removed, or adjusted as a result of the evolution. We use
cLos ..o to corroborate the above-mentioned claims and to
make them precise. The results of this analysis are
summarized in Table II.

The results show that the complexity of evolving the
Strategy pattern as well as each Strategy-based design
towards shifts in strategies (&) is fixed (0(1)) because the
strategies can be changed or extended independently of the
contexts. Therefore, we can conclude that the Strategy
pattern or each design based on this pattern (such as the
design illustrated in the right column of Fig. 5) is flexible
towards &.

As shown in Table II, the evolution complexity of a
traditional design (such as the design illustrated in the left
column of Fig. 5) towards & is proportional to the number
of strategies (0 X |Strategies|) because of the
corresponding conditional statements, so it is inflexible
towards &.

TABLE 11
THE COMPLEXITY OF EVOLVING THE STRATEGY PATTERN VS.
‘SWITCH’ OR ‘MULTIPLE CONDITIONAL’ STATEMENTS TOWARDS
SHIFTS IN STRATEGIES

Evolution step

Change/Add/Remove observer

Design policy
Strategy pattern 0(1)
‘Switch’ or ‘multiple (6 x |Strategies|)
conditional’ statements 0<0<1

C. Mediator Pattern

We may use the Mediator pattern when [10]:

e A set of objects communicate in well-defined but
complex ways. The resulting interdependencies are
unstructured and difficult to understand.

¢ Reusing an object is difficult because it refers to and
communicates with many other objects.

e The behavior distributed between several classes
should be customizable without a lot of subclassing.

If at least one of the above-mentioned conditions holds
in a part of the initial design of software, this part has the
potential to be revised by the Mediator pattern. The
Mediator pattern defines an object named mediator. This
object encapsulates how a set of objects, referred to as
colleagues, interact.

Before Revision (Traditional design)

TrafficManager
Hrafficinfo [] : float
-TInfoChanged()
+Attach{observer, aspect and interest)
+Dettachi{observer)
+hlotify ()

subject

observers
TrafficFeature
+MeasureFeatura() : float
+Attachichserver, aspect and interets)
+Detachiobserver)

subjects

ControlStrategyGenerator
+CalculateCurrentTrafficMode()
+lpdate(aspect and interest)

chserver

subjects
TrafficMode
+CalculateSutabiltyPercertagel) : float
+Attachiohserver)
+Detach(observer)

+Matify()
+Update(aspect and interest)

ohservers

+Motify()
+Update(aspect and interest)

After Revision (Pattern-based design)

+Update(aspect and interest, new'al ; Float)

TrafficManager ControlStrate gyGenerator
trafficinfo []: float tm {subject} +CalculateCurrentTrafficMode()
TinfoChanged() +Update(aspect and interest, new\al : Float)
+Motify(aspect and interest)

chmant
°h — (Mediator) csgen {observer}
+Register{subject, ohserver, aspect and interest) chmanc
chman [+Unregister{subject, observer)
tis +hotify(subject, aspect and interest) chmairitr tms
{subjects/observers} {subjectslobservers}
TrafficFeature Traff d

+MeasureFeature]) ; float +CalculateSuttabiltyPercentage() | float
+Notify() +Motify()

+Update(aspect and interest, new'al : Float)

Fig. 6. Third revision of the initial class diagram of the multi-lift system using the Mediator pattern.

17

Journal of Soft Computing and Information Technology (JSCIT)

...................................... Vol. 5, No. 1, Spring 2016

The diagram illustrated in the left column of Fig. 6 has
already been revised using the Observer pattern (in Fig. 4).
The flexibility of this part is improved further, using the
Mediator pattern. An object named ChangeManager is
introduced when the coupling between subjects and
observers is complex. This object, as an instance of the
Mediator pattern, is to keep these complex relationships.
The main responsibilities of this object are 1) it defines an
interface to connect a subject to its observers and manages
this relationship. This omits the need for subjects to know
their observers explicitly and vice versa, 2) it defines a
straightforward update strategy and 3) it notifies and
updates all related observers at the request of
corresponding subject. The right column of Fig. 6
illustrates the newly revised version of this part after
applying the Mediator pattern.

The Mediator design pattern claims that:
¢ |t makes changing behavior easy through subclassing
the mediator object without changing its colleagues.

e A mediator object decreases the coupling between its

colleagues. Therefore, they can be varied and reused
independently.
Many-to-many interactions among the colleagues of
a mediator object are replaced with one-to-many
interactions between the mediator object and its
colleagues. Understanding, maintenance, and
extension of one-to-many relationships are easier,
compared to many-to-many ones.

We use C¢jasses tO COrroborate these claims and to make
them precise. The results of this analysis are summarized in
Table I11.

The results show that the complexity of evolving the
Mediator pattern or each Mediator-based design towards
shifts in behavior (&;), colleagues (€,), and relationships
(&) is fixed (0(1)) because mediators and colleagues can
be changed independently. Therefore, we can conclude that
the Mediator design pattern or each design based on it is
flexible towards &, &,, and ;. As shown in Table 11, the
evolution complexity of a traditional design towards these
three evolution steps (&;, &,, and &) is directly
proportional to the number of colleagues (6 X
|Colleagues]|), so it is inflexible towards &, &,, and &;
because of the coupling between mediators and colleagues.

The results of the aforementioned analyses show that the
revision of the initial class diagram of the multi-lift system
using the Observer, Strategy, and Mediator patterns during
the phase FAP of SDAgxsre improves the flexibility of the
system. The flexibility is quantified using the evolution
cost metric through calculating the complexity of evolution
steps. In other words, the flexibility improvement claimed
by these three design patterns is corroborated by the
evolution cost metric. There is a direct relationship among
the value of the evolution cost, the evolution complexity,

18

and the flexibility of a design towards a particular
evolution step [12-15], [18]. It is worth mentioning that
there is no limitation on the application domain of the
proposed method in measuring the flexibility of design
patterns. As previously mentioned, the reason of selecting
the three patterns Strategy, Mediator, and Observer is the
design requirements of the multi-lift system used as the
case study.

TABLE 111
THE COMPLEXITY OF EVOLVING THE MEDIATOR PATTERN VS.
TRADITIONAL DESIGN TOWARDS SHIFTS IN BEHAVIOR,
COLLEAGUES, AND RELATIONSHIPS
Design policy Traditional design
Evolution step (‘anti-pattern”)

0(6 x |Colleagues])

Mediator pattern

Change behavior 01

’ W 0<6<1
Change colleague 0(1) 0(6 x |Colleagues|)

0<6<1

Extend

relationships oD 0(6 x |Colleagues|)

between colleagues 0<6=<1

I11. CONCLUSION

In this paper, we quantify the flexibility improvement
promised by the software development approach
SDAGxere, Which has recently been proposed to develop
reliable yet flexible software. This approach improves
software flexibility through preparing the ground for the
visual revision of the structure and the behavior of the
software being developed using design patterns. In such a
case, software flexibility is directly proportional to the
flexibility of those design patterns used during its
development process. Therefore, to quantify the flexibility
of software, the flexibility of each of the design patterns
used during the development process of the software is
quantitatively measured by calculating the complexity of
evolution steps through the evolution cost metric. As an
empirical study, the flexibility of the multi-lift system that
has already been developed using SDAgegre 1S quantified.
The results confirm the promised flexibility improvement

ACKNOWLEDGMENT

This work was supported in part by: Ferdowsi University
of Mashhad’s Research Council, under grant #28190 (dated
14-11-92) on Static Fine Job.

REFERENCES

[1] J. Niu, “A Measurement Method of Software Flexibility Based on
BP Network,” in Proc. Int. Workshop on Intelligent Systems and
Applications (ISA), 2009, pp. 1-4.

[2] S. PENG, “User-Oriented Measurement of Software Flexibility,” in

A New Approach to the Quantitative Measurement of Software Flexibility...................ccc.ccooo.. Abbas Rasoolzadegan

Proc. World Congress on Computer Science and Information
Engineering, 2009, pp. 629-633.

[3] R. Martinho, “A Two-Step Approach for Modeling Flexibility in
Software Processes,” in Proc. 23rd IEEE/ACM International
Conference on Automated Software Engineering, Italy, 2008, pp.
427-430.

[4] H. Oliver, O. Philipp, and B. Udo. (2010, Jan.). Improving Software
Flexibility for Business Process Changes. Business & Information
Systems Eng. [Online]. 2(1), pp. 3-13. Available:
http://link.springer.com/article/10.1007/s12599-009-0086-8

[5] A. Rasoolzadegan and A. Abdollahzadeh. (2014, Jul.). Reliable yet
Flexible Software through Formal Model Transformation (Rule
Definition). Journal of Knowledge and Information Systems (KAIS),
[Online]. 40 1), PP. 79-126. Auvailable:
http://link.springer.com/article/10.1007/s10115-013-0621-2

[6] A. Rasoolzadegan and A. Abdollahzadeh, “Specifying a Parallel,
Distributed, Real-Time, and Embedded System: Multi-Lift System
Case Study,” Information Technology and Computer Eng. Faculty,
Amirkabir Univ. Technology, Tehran, Iran, Tech. Rep., 2011.

[7] H. B. Christensen, “Flexible, Reliable Software: Using Patterns and
Agile Development,” Chapman and Hall/CRC, 1st ed., 2010.

[8] H. Eden and T. Mens. (2006, Jun.). Measuring Software Flexibility.
IEE Software. [Online]. 153(3), pp. 113-126. Available:

http://ieeexplore.ieee.org/document/1645518/

[9] G.H.Z. L (2008, Apr.). Research on Flexibility Metrics in Software
Architecture Level. Computer Science. [Online]. 35 (4). pp. 259-264.
Available:
http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJA200804078.htm

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Pattern:
Elements of Reusable Object-Oriented Software,” Addison-Wesley
Publishing Company, Fifth ed., 1995.

[11] A. M. Ross, D. H. Rhodes, and D. E. Hastings. (2008, Apr.).
Defining Changeability: Reconciling Flexibility, Adaptability,
Scalability, Modifiability, and Robustness for Maintaining System
Lifecycle Value. Systems Engineering. [Online]. 11(3), pp. 246-262.
Available:

http://onlinelibrary.wiley.com/doi/10.1002/sys.20098/abstract

[12] R. S. A. DeLoach and V. A. Kolesnikov, “Using Design Metrics for
Predicting System Flexibility,” in Proc. Fundamental Approaches to
Software Engineering, 2006, pp. 184-198.

[13] T. Sasaki, N. Yoshioka, Y. Tahara, and A. Ohsuga, “Evaluation of
Flexibility to Changes Focusing on the Variable Structures in
Legacy Software,” in Proc. Knowledge-Based Software
Engineering: 11th Joint Conference, 2014, pp. 252-269.

[14] Y. Gao and Y. Yang, “Flexibility of Software Development
Method,” in Proc. Advances in Intelligent and Soft Computing,
2011, pp. 383-387.

[15] Y. Wang, M. Jia, J. Guo, and B. Zhang, “Evaluating Model of
Software Flexibility of Domestic Foundational Software,” in Proc.
International Conference on Electrical and Control Engineering,
2011, pp. 5906-5909.

[16] S. Jarzabek and H. D. Trung, “Flexible generators for software reuse
and evolution,” in Proc. 33rd international conference on Software
engineering, 2011, pp. 920-923.

[17] S. Niu, A. Xu, and Z. Song, “A flexible software framework with
dynamic expansible signals,” in Proc. 2014 IEEE UTOTESTCON,
2014, pp. 355-359.

[18] B. Johnson, W. W. Woolfolk, R. Miller, and C. Johnson, “Flexible
Software Design: Systems Development for Changing
Requirements,” CRC Press, 1th ed., 2005.

[19] I. Kim, D. Bae, and J. Hong. (2007, Nov.). A component
composition model providing dynamic, flexible, and hierarchical
composition of components for supporting software evolution.

Journal of Systems and Software. [Online]. 80(11), pp. 1797-1816.
Auvailable:
http://www.sciencedirect.com/science/article/pii/S016412120700065
9

- N LI
LW U’/J!J;(/JUJM}/—J&}f

YYAY-)« 5 iLs A0 Jlo Ll o) oyled b als

NP8l y g pdySllasil (B (g pFejluil gl wsua ;U] SO

OBl s, ole
rasoolzadegan@um.ac.ir <l | cagios cguive owgd,8 olSisls ¢ cwdige 0aSCisls o Lol

9 L20,,l5 10 4 (ondany 53l 5 SO Armgi' 9 dgute Cdgew ol 31 Gl Wylee 1581 0 53 (g .0y Bllasil - oS
po—tcho S l38l0 5 (5 iy dllaxil 00,5 oolisusl B 3 el oo (> lyb T (gl faisl 5o a5 4zl 51l ol bauxo
as l33lp 35 6y My Bllasil (5 (g puS0 313l 59 8 AT (o0 Hloid s 13810 5SS vio S aloxr I g Comsd Gllao
RO Slanil Jlo e 55 g Sloxe! S 13310 5 anwgi sl p oz H5T0ly S Tpad ol a1 o 53 (59331395 90
& 7o Blbamil 55 g o303l gl Sy az 0]y Ky dlio ol 53 ol 0o 431 odimy g5 bawgi (SDAFIexgRel plids)
s0h a1yl 5Byl Llesl 33,5 co orw yokiio (32! (6] 05,5 o0 45Ty SDAFIexgRel oS &1 bl drwgi gl 33le 13
@90 4 (53 Rdmiiony (5 ;50311 HBB) () (uizmad 00)5 (L5 (b (gla Sl S 4y (5 Iy Sllaxil Sgupe (sl
325 SDAFIexgRel 2wyl (6132 ¢! 31 iy 45 AhtlS Wiz jguuilis] lgi b (59590 alllae Sy B o o g %5
o_..,b 1) SDAFIex&Rel omwgi 00 0313 suc g (6 3y Bllaxil Dgups z LG .00,5 0 (w2 Sl 48,5 41,5 solaswl g0

S oo

.)1)'5"::)5 slolso ‘u:“")"a Sl ‘625 & S o3ladl “_gﬁ.:\is.éLb.’_S| ‘_;a.,.b‘ k5l'°°3|3

