ارائه یک الگوریتم کاهش مصرف انرژی با هدف قابلیت اطمینان در پردازنده‌های چندگانه در محیط محاسبات ابری

نوع مقاله: مقاله پژوهشی فارسی

نویسندگان

1 دانشگاه آزاد اسلامی – واحد دولت آباد - اصفهان – ایران .

2 دانشگاه آزاد اسلامی واحد دولت آباد - گروه کامپیوتر - اصفهان - ایران

3 دانشگاه آزاد اسلامی واحد مبارکه، گروه مهندسی کامپیوتر، مبارکه، اصفهان، ایران.

چکیده

زمان‌بندی وظایف با محدودیت زمان و انرژی در محیط‌های چند پردازنده‌ای با سطوح مختلف فرکانس به عنوان یک مسئله بهینه‌سازی مهم در رایانش ابری مطرح است. به‌علاوه یک پردازنده که با فرکانس کاهش‌یافته کار می‌کند، به‌طور پویا باعث افزایش خرابی‌هایی می‌شود که این امر باعث ضعیف شدن قابلیت اطمینان برنامه‌های کاربردی می‌شود. قابلیت اطمینان یک عنصر مهم از شایستگی سیستم است و باید در برنامه‌های کاربردی امنیتی مورد توجه قرار گیرد. در این مقاله مسئله زمان‌بندی وظایف در چندین پردازنده با هدف کاهش مصرف انرژی و افزایش قابلیت اطمینان مورد توجه قرار گرفته است. با استفاده از چند پردازنده‌ای و تکنولوژی مقیاس‌بندی ولتاژ و فرکانس پویا (DVFS) می‌توان سطح فرکانس پردازنده را تا حد امکان پایین آورد و در نتیجه ولتاژ مصرفی آن پردازنده را کاهش داد. در اینجا یک الگوریتم دو مرحله‌ای برای به حداقل رساندن مصرف انرژی با هدف قابلیت اطمینان در پردازنده‌های چندگانه ارائه می‌شود. مرحله اول برای تخصیص اولیه و مرحله دوم برای ارضاء هدف قابلیت اطمینان و بهبود بهره‌وری انرژی است. به‌طور خاص، هنگامی که هدف قابلیت اطمینان نرم افزار از طریق تخصیص اولیه نمی‌تواند به‌دست آید، بر اساس ضریب اطمینان فعلی تعریف شده‌ی ما، یک الگوریتم بهبودیافته طراحی می‌شود که می‌تواند هدف قابلیت اطمینان را ارضاء کند. الگوریتم پیشنهادی با الگوریتم‌های موجود مقایسه شد. نتایج آزمایش‌ها نشان می‌دهد که الگوریتم پیشنهادی مصرف انرژی کمتری دارد درحالی‌که هدف قابلیت اطمینان برنامه‌های کاربردی را نیز برآورده می‌کند.

کلیدواژه‌ها


[1]           J.Koomey, “Growth in data center electricity use 2005 to 2010”, A report by Analytical Press, completed at the request of The New York Times, 2011.

[2]           A.Greenberg, J.Hamilton, DA.Maltz, P.Patel, “The cost of a cloud: research problems in data center networks”, ACM SIGCOMM computer communication review, vol. 39, no. 1, pp. 68-73, 2008.

[3]           M. Lin, Y.Pan, LT.Yang, M. Guo, N.Zheng, “Scheduling co-design for reliability and energy in cyber-physical systems”, IEEE Transactions on Emerging Topics in Computing, vol. 1, no. 2, pp. 353-65, 2013.

[4]           L Benini, A.Bogliolo, G. De Micheli, “A survey of design techniques for system-level dynamic power management”, IEEE transactions on very large scale integration (VLSI) systems, vol. 8, no. 3, pp. 299-316, 2000.

[5]           EJ. Hogbin. “ACPI: Advanced Configuration and Power Interface”, Phoenix Usa, pp. 1–24, 2004.

[6]           V. Venkatachalam, M. Franz, “Power reduction techniques for microprocessor systems”, ACM Computing Surveys (CSUR), vol.37, no. 3, pp. 195-237, 2005.

[7]           G. Xie, R. Li, K. Li, “Heterogeneity-driven end-to-end synchronized scheduling for precedence constrained tasks and messages on networked embedded systems”, Journal of Parallel and Distributed Computing, vol. 83, pp. 1-12, 2015.

[8]           D. Zhu, H. Aydin, “Reliability-aware energy management for periodic real-time tasks”, IEEE Transactions on Computers, vol. 58, no. 10, pp. 1382-1397, 2009.

[9]           D. Zhu, “Reliability-aware dynamic energy management in dependable embedded real-time systems”, In: 12th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'06), pp. 397-407, 2006.

[10]         G. Xie, Y. Chen, X. Xiao, C. Xu, R. Li, K. Li, “Energy-efficient fault-tolerant scheduling of reliable parallel applications on heterogeneous distributed embedded systems”, IEEE Transactions on Sustainable Computing, vo-181, 2018.

[11]         G. Xie, J. Jiang, Y. Liu, R. Li, K. Li, “Minimizing energy consumption of real-time parallel applications using downward and upward approaches on heterogeneous systems”, IEEE Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1068-1078, 2017.

[12]         H. Xu, R. Li, L. Zeng, K. Li, C. Pan, “Energy-efficient scheduling with reliability guarantee in embedded real-time systems”, Sustainable Computing: Informatics and Systems, vol. 18, pp. 137-148, 2018.

[13]         L. Zhang, K. Li, C. Li, K. Li, “Bi-objective workflow scheduling of the energy consumption and reliability in heterogeneous computing systems”, Information Sciences, vol. 379, pp. 241-256, 2017.

[14]         D. Zhu, R. Melhem, D. Mossé, “The effects of energy management on reliability in real-time embedded systems”, In Proceedings of the 2004 IEEE/ACM International conference on Computer-aided design, pp. 35-40, 2004.

[15]         L. Zhang, K. Li, K. Li, Y. Xu, “Joint optimization of energy efficiency and system reliability for precedence constrained tasks in heterogeneous systems”, International Journal of Electrical Power & Energy Systems, vol. 78, pp. 499-512, 2016.  

[16]         L. Zhao, Y. Ren, Y. Xiang, K. Sakurai, “Fault-tolerant scheduling with dynamic number of replicas in heterogeneous systems”, In IEEE 12th International Conference on High Performance Computing and Communications (HPCC), pp. 434-441, 2010.

[17]         H. Topcuoglu, S. Hariri, MY. Wu, “Performance-effective and low-complexity task scheduling for heterogeneous computing”, IEEE transactions on parallel and distributed systems, vol. 13, no. 3, pp. 260-274, 2002.

[18]         G. Xie, Y. Chen, Y. Liu, Y. Wei, R. Li, K. Li, “Resource consumption cost minimization of reliable parallel applications on heterogeneous embedded systems”, IEEE Transactions on Industrial Informatics, vol. 13, no. 4, pp. 1628-1640, 2017.

[19]         G. Xie, Y. Chen, X. Xiao, C. Xu, R. Li, K. Li, “Energy-efficient fault-tolerant scheduling of reliable parallel applications on heterogeneous distributed embedded systems”, IEEE Transactions on Sustainable Computing, vol. 3, no. 3, pp. 167-181, 2018.

[20]         M. Fan, Q. Han, X. Yang, “Energy minimization for on-line real-time scheduling with reliability awareness”, Journal of Systems and Software,vol. 127, pp. 168-176, 2017.

[21]         L. Ismail, A. Fardoun, “Eats: Energy-aware tasks scheduling in cloud computing systems”, Procedia Computer Science, vol. 83, pp. 870-877, 2016.

[22]         MH. Kumar, SK. Peddoju, “Energy efficient task scheduling for parallel workflows in cloud environment”, In 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 1298-1303, 2014.

[23]       YK. Kwok, I. Ahmad, “Static scheduling algorithms for allocating directed task graphs to multiprocessors”, ACM Computing Surveys (CSUR), vol. 31, no. 4, pp. 406-471, 1999.

[24]       GC. Sih, EA. Lee, “A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures”, IEEE transactions on Parallel and Distributed systems, vol. 4, no. 2, pp. 175-187, 1993.

[25]        R. Sakellariou, H. Zhao, E. Tsiakkouri, MD Dikaiakos, “Scheduling workflows with budget constraints”, In Integrated research in GRID computing, pp. 189-202, 2007. 

[26]        L. Wang, SU. Khan, D. Chen, J. KołOdziej, R. Ranjan, CZ. Xu, A. Zomaya, “Energy-aware parallel task scheduling in a cluster”, Future Generation Computer Systems, vol. 29, no. 7, pp. 1661-1670, 2013.

[27]        L. Wang, G. Von Laszewski, J. Dayal, F. Wang, “Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with DVFS”, In Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pp. 368-377, 2010. 

[28]        SK. Garg, CS. Yeo, A. Anandasivam, R. Buyya, “Environment-conscious scheduling of HPC applications on distributed cloud-oriented data centers”, Journal of Parallel and Distributed Computing, vol. 71, no. 6, pp. 732-749, 2011.

[29]        K.H. Kim, A. Beloglazov, R. Buyya, “Power-aware provisioning of cloud resources for real-time services”, In Proceedings of the 7th International Workshop on Middleware for Grids, Clouds and e-Science, p. 1, 2009.

[30]        R. Garg, AK. Singh, “Energy-aware workflow scheduling in grid under QoS constraints”, Arabian Journal for Science and Engineering, vol. 41, no. 2, pp. 495-511, 2016.

[31]     R.  Khorsand, M. Ghobaei‐Arani, M. Ramezanpour, “FAHP approach for autonomic resource provisioning of multitier applications in cloud computing environments”, Software: Practice and Experience, vol. 48, no. 12, pp. 2147-2173, 2018.

[32]        R. Khorsand, F. Safi-Esfahani, N. Nematbakhsh, M. Mohsenzade, “ATSDS: adaptive two-stage deadline-constrained workflow scheduling considering run-time circumstances in cloud computing environments”, The Journal of Supercomputing, vol. 73, no. 6, pp. 2430-2455, 2017.

[33]        R. Khorsand, F. Safi-Esfahani, N. Nematbakhsh, M. Mohsenzade, “Taxonomy of workflow partitioning problems and methods in distributed environments”, Journal of Systems and Software, vol. 132, pp. 253-271,  2017.

[34]        T. Kaur, I. Chana, “Energy efficiency techniques in cloud computing: A survey and taxonomy”, ACM computing surveys (CSUR), vol. 48, no. 2, pp. 22-46, 2015.

[35]        YH. Wang, IC. Wu, “Achieving high and consistent rendering performance of Java AWT/Swing on multiple platforms”, Software: Practice and Experience, vol. 39, no. 7, pp. 701-736, 2009.

[36]        M. Ghobaei-Arani, S. Jabbehdari, MA. Pourmina, “An autonomic approach for resource provisioning of cloud services”, Cluster Computing, vol. 19, no. 3, pp. 1017-1036, 2016.

[37]        V. Venkatachalam, M. Franz, “Power reduction techniques for microprocessor systems”, ACM Computing Surveys (CSUR), vol. 37, no. 3, pp. 195-237, 2005.

[38]         Z. Tang, L. Qi, Z. Cheng, K. Li, SU. Khan, K. Li, “An energy-efficient task scheduling algorithm in DVFS-enabled cloud environment”, Journal of Grid Computing, vol. 14, no. 1, pp. 55-74, 2016.