ارائه روشی ترکیبی بر مبنای الگوریتم های تکاملی جهت خوشه بندی کاربران وب

نویسندگان

1 ، دانشکده برق-رایانه و فن آوری اطلاعات، دانشگاه آزاد اسلامی، واحد قزوین

2 استادیار، دانشکده مهندسی کامپیوتر، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

چکیده

خوشه‌بندی کاربران وب با یافتن یک ساختار و الگو درون مجموعه­ای از وقایع وب درگیر است و منجر به تولید صفحات شخصی‌سازی شده، سیستم‌های پیشنهادگر و بازاریابی مستقیم در تجارت الکترونیک خواهد شد. در حوزه خوشه‌بندی همیشه این مسئله مطرح بوده که بتوان خوشه‌هایی با کمترین فاصله درون خوشه‌ای و بیشترین فاصله بین خوشه‌ای استخراج نمود. در این مقاله یک الگوریتم ترکیبی برای خوشه‌بندی کاربران وب با استفاده از ترکیب الگوریتم باکتری‌ها و الگوریتم فرهنگی ارائه می­شود. در این راستا ابتدا با استفاده از روش بهینه‌سازی غذایابی باکتری‌ها فضای مسئله مدل‌بندی شده است سپس یک فضای فرهنگی برای مسئله ایجاد می‌شود که هنجارهای مناسب در آن نگهداری می‌شود. فضای فرهنگی بوجود آمده در انجام هرچه بهتر عملیات تکاملی باکتری‎‌ها مثل تقسیم ژن و ادغام ژن موثر واقع شده و از انجام عملیات به­طور تصادفی جلوگیری می‌شود. برای انجام آزمایشات از دو مجموعه داده واقعی EPA و NASA استفاده شده است که نتایج به­دست آمده حاکی از عملکرد بهتر این روش در مقایسه با سایر الگوریتم‌ها می‌باشد.

کلیدواژه‌ها


   [1]      S. G. Petridou, V. A. Koutsonikola, A. I. Vakali, and G. I. Papadimitriou, "Time-Aware Web Users' Clustering," IEEE Trans. on Knowl. and Data Eng., vol. 20, pp. 653-667, 2008.

   [2]            A. P. Engelbrecht, Computational Intelligence: An Introduction. University of Pretoria, South Africa, 978-0-470-03561-0, 2007.

   [3]            S. R. Aghabozorgi and T. Y. Wah, "Recommender systems: incremental clustering on web log data," presented at the Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, Seoul, Korea, 2009.

   [4]            S. Alam, "Intelligent web usage clustering based recommender system," presented at the Proceedings of the fifth ACM conference on Recommender systems, Chicago, Illinois, USA, 2011.

   [5]            S. Alam, G. Dobbie, and P. Riddle, "Towards recommender system using particle swarm optimization based web usage clustering," presented at the Proceedings of the 15th international conference on New Frontiers in Applied Data Mining, Shenzhen, China, 2012.

   [6]            K. Santhisree and A. Damodaram, "CLIQUE: Clustering based on density on web usage data: Experiments and test results," in Electronics Computer Technology (ICECT),3rd International Conference, pp. 233-236, 2011.

   [7]            K. Suresh, R. MadanaMohana, A. RamaMohan Reddy, and A. Subramanyam, "Improved FCM Algorithm for Clustering on Web Usage Mining," in Computer and Management (CAMAN), International Conference, pp. 1-4, 2011.

   [8]            M. A. Bayir, I. H. Toroslu, M. Demirbas, and A. Cosar, "Discovering better navigation sequences for the session construction problem," Data Knowl. Eng., vol. 73, pp. 58-72, 2012.

   [9]            T. Hussain, S. Asghar, and N. Masood, "Hierarchical sessionization at preprocessing level of WUM based on swarm intelligence," in Emerging Technologies (ICET), 6th International Conference, pp. 21-26, 2010.

[10]            K. Liu, "Analysis of preprocessing methods for web usage data," in Measurement, Information and Control (MIC), International Conference, pp. 383-386, 2012.

[11]            S. Alam, G. Dobbie, and P. Riddle, "Particle Swarm Optimization Based Clustering of Web Usage Data," in Web Intelligence and Intelligent Agent Technology, WI-IAT '08. IEEE/WIC/ACM International Conference, pp. 451-454, 2008.

[12]            J. Olesen, J. Cordero H, and Y. Zeng, "Auto-Clustering Using Particle Swarm Optimization and Bacterial Foraging," in Agents and Data Mining Interaction. ed: Springer Berlin Heidelberg, pp. 69-83, 2009.

[13]            E. Saka and O. Nasraoui, "On dynamic data clustering and visualization using swarm intelligence," in Data Engineering Workshops (ICDEW), IEEE 26th International Conference, pp. 337-340, 2010.

[14]            C. Junyan and Z. HuiYing, "Research on Application of Clustering Algorithm Based on PSO for the Web Usage Pattern," in Wireless Communications, Networking and Mobile Computing, WiCom 2007. International Conference, pp. 3705-3708, 2007.

[15]            P. Loyola, P. E. Rom, J. D. Vel, and Squez, "Predicting web user behavior using learning-based ant colony optimization," Eng. Appl. Artif. Intell., vol. 25, pp. 889-897, 2012.

[16]            A. Alphy and S. Prabakaran, "Cluster optimization for improved web usage mining using ant nestmate approach," in Recent Trends in Information Technology (ICRTIT), International Conference, pp. 1271-1276, 2011.

[17]            H. H. Inbarani and K. Thangavel, "Clickstream Intelligent Clustering using Accelerated Ant Colony Algorithm," in Advanced Computing and Communications, ADCOM 2006. International Conference, pp. 129-134, 2006.

[18]            A. Abraham and V. Ramos, "Web usage mining using artificial ant colony clustering and linear genetic programming," in Evolutionary Computation, CEC '03. The 2003 Congress, Vol.2, pp. 1384-1391, 2003.

[19]            N. M. Varghese and J. John, "Cluster optimization for enhanced web usage mining using fuzzy logic," in Information and Communication Technologies (WICT), World Congress, pp. 948-952, 2012.

[20]            V. S. Dixit and S. Bhatia, "Refinement and evaluation of web session cluster quality," International Journal of System Assurance Engineering and Management, pp. 1-17, 2014.

[21]            Z. Anari, M. R. Meybodi, and B. Anari, "Clustering Web Access Patterns based on Learning Automata and Fuzzy Logic," Proceedings of the 3rd Iran Data Mining Conference(IDMC'09), 2009.

[22]            R. Rastegar, A. R. Arasteh, A. Hariri, and M. R. Meybodi, "A Fuzzy Clustering Algorithm using Cellular Learning Automata based Evolutionary Algorithm," presented at the Proceedings of the Fourth International Conference on Hybrid Intelligent Systems, 2004.

[23]            M. Talabeigi, R. Forsati, and M. R. Meybodi, "A Hybrid Web Recommender System Based on Cellular Learning Automata," in Granular Computing (GrC), IEEE International Conference, pp. 453-458, 2010.

[24]            E. Tuğ, M. Şakiroğlu, and A. Arslan, "Automatic discovery of the sequential accesses from web log data files via a genetic algorithm", Knowledge-Based Systems, vol.19, pp.180-186, 2006.

[25]            J. Kennedy and R. Eberhart, "Particle swarm optimization," in Neural Networks, Proceeding, IEEE International Conference, vol.4, pp. 1942-1948, 1995.

[26]            S. Das, A. Chowdhury, and A. Abraham, "A Bacterial Evolutionary Algorithm for automatic data clustering," in Evolutionary Computation, 2009. CEC '09. IEEE Congress, pp. 2403-2410, 2009.

[27]      ه. بیگدلی , ن. دانشپور, "بهبود خوشه بندی کاربران وب با استفاده از الگوریتم باکتری‌ها," بیست و دومین کنفرانس مهندسی برق ایران, 1392.

[28]            J. Brownlee, "Clever Algorithms: Nature-Inspired Programming Recipes", 978-1-4467-8506-5, 2011.

[29]            K. M. Passino, "Biomimicry of bacterial foraging for distributed optimization and control," Control Systems, IEEE, vol. 22, pp. 52-67, 2002.

[30]      [30] R. Reynolds and M. Ali, "Embedding a social fabric component into cultural algorithms toolkit for an enhanced knowledge‐driven engineering optimization," International Journal of Intelligent Computing and Cybernetics, vol. 1, pp. 563-597, 2008.

[31]            R. G. Reynolds and C. ChanJin, "Knowledge-based self-adaptation in evolutionary programming using cultural algorithms," in Evolutionary Computation, IEEE International Conference, pp. 71-76, 1997.

[32]            D. DeMin, "Exploration on Web Usage Mining and its Application," in Intelligent Systems and Applications, International Workshop, pp. 1-4, 2009.

[33]            S. Alam, G. Dobbie, P. Riddle, and K. Yun Sing, "Hierarchical PSO clustering based recommender system," in Evolutionary Computation (CEC), 2012 IEEE Congress, pp. 1-8, 2012.

[34]            G. T. Raju and M. V. Sudhamani, "A novel approach for extraction of cluster patterns from Web Usage Data and its performance analysis," in Emerging Trends in Electrical and Computer Technology (ICETECT), International Conference, pp. 718-723, 2011.

[35]            G. Castellano, A. M. Fanelli, C. Mencar, and M. A. Torsello, "Similarity-Based Fuzzy Clustering for User Profiling", in Web Intelligence and Intelligent Agent Technology Workshops, IEEE/WIC/ACM International Conferences, pp. 75-78, 2007.

[36]            G. Poornalatha and P. Raghavendra, "Web User Session Clustering Using Modified K-Means Algorithm," in Advances in Computing and Communications. vol. 191, ed: Springer Berlin Heidelberg, pp. 243-252, 2011.

[37]            C. Dimopoulos, C. Makris, Y. Panagis, E. Theodoridis, and A. Tsakalidis, "A web page usage prediction scheme using sequence indexing and clustering techniques," Data Knowl. Eng., vol. 69, pp. 371-382, 2010.

[38]            Q. Song and M. Shepperd, "Mining web browsing patterns for E-commerce," journal of elsevier,Computers in Industry, pp. 622–630, 2006.

[39]            P. G and P. Raghavendra, "Alignment Based Similarity distance Measure for Better Web Sessions Clustering," The 2nd International Conference on Ambient Systems, Networks and Technologies (ANT), pp. 450–457, 2011.

[40]            Z. Yu and Hau-SanWong, "Quantization-based clustering algorithm," journal of elsevier,Pattern Recognition, pp. 2698–2711, 2010.

[41]            X. JinHua and L. Hong, "Web user clustering analysis based on KMeans algorithm," in Information Networking and Automation (ICINA), International Conference, pp. V2-6-V2-9, 2010.

[42]            D. VS and B. SK, "Refinement of clusters based on dissimilarity measures," International Journal Multidisciplinary Res Adv Eng (IJMRAE), pp. 33–54, 2014.

[43]            E. Gonzales, S. Mabu, K. Taboada, and K. Hirasawa, "Web mining using Genetic Relation Algorithm," SICE annual conference, pp. 1622–1627, 2010.