

Journal of Soft Computing and Information Technology (JSCIT)

Babol Noshirvani University of Technology, Babol, Iran

Journal Homepage: jscit.nit.ac.ir

Volume 12, Number 1, Spring 2023, pp. 41-51

Received: 09/26/2020, Revised: 10/03/2021, Accepted: 01/22/2022

41

Checking Reachability Property in Complex Concurrent Software

Systems with a Knowledge Discovery Approach

Jaafar Partabian1, Karamollah Bagherifard2*, Vahid Rafe3, Hamid Parvin4, Samad Nejatian5

1- Department of Computer Engineering, Lamerd Branch, Islamic Azad University, Lamerd, IRAN.

2*- Department of Computer Engineering,Yasooj Branch, Islamic Azad University, Yasooj, IRAN.

3- Department of Computer Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, IRAN.

4-Department of Computer Engineering, Nourabad Mamasani Branch, Islamic Azad University, Nourabad Mamasani,

IRAN.

5- Department of Electrical Engineering Yasooj Branch, Islamic Azad University, Yasooj, IRAN.
1jaafar_partabian@yahoo.com, 2*k.bagheri@iauyasooj.ac.ir, 3v-rafe@araku.ac.ir, 4parvinhamid@gmail.com, 5

Samad.nej.2007@gmail.com

* Corresponding author address: Department of Computer Engineering Yasooj Branch, Islamic Azad University, Yasooj,

IRAN.

Abstract- The model checking technique is a formal and effectual way in verification of software systems. By

the generation and investigation of all model states, it analyses the software systems. The main issue in the

model checking of the complicated systems having wide or infinite state space is the lack of memory in the

generation of all states, which is referred to as "state space explosion". The Random Forest algorithm which is

capable of knowledge discovery faces the above-cited problem by selecting a few promising paths. In our

suggested method, first a small model of the system is developed by the formal language of graph

transformation system (GTS). A training data set is created from the small state space. The generated training

data set is made available to the Random Forest algorithm to detect and discover the logical relationships

existing in it. Then, the knowledge acquired in this way is used in the smart and incomplete exploration of the

large state space. The proposed approach is run in GROOVE which is an opensource tool for designing and

studying the model of graph transformation systems. The results show that, in addition to increasing the

intelligence of the model checking process, the suggested method requires less initial parameter adjustment.

The proposed approach is implemented on several well-known problems. According to the experimental

results, the proposed method performs better than the earlier ones in terms of average run time, the number of

explored modes and the accuracy.

Keywords-Software systems verification, Knowledge discovery, State space explosion, Model checking.

I.INTRODUCTION

The need to produce error-free systems concomitant

with the increasing use of software in everyday life is

more and more felt. Generating secure systems is of great

importance especially in critical applications where any

contingent error may lead to loss of many lives.

Verification process in the critical applications should be

carried out in the analysis and design phase prior to the

implementation stage. Among other common ways, the

checking model technique is employed as a formal

verification approach seeking to find out whether the

model of a system meets the predetermined requirements.

Graph transformation system is widely used in

modelling, and allows us to describe system behaviour

and states formally in the form of graphs and charts. The

model checking, though an efficient approach in

discovering the system's error, would encounter the state

space explosion while needing to generate the whole state

space of the model. When the problem's dimensions

http://www.jscit.nit.ac.ir/
mailto:jaafar_partabian@yahoo.com
mailto:k.bagheri@iauyasooj.ac.ir
mailto:v-rafe@araku.ac.ir
mailto:parvinhamid@gmail.com

Journal of Soft Computing and Information Technology (JSCIT) ………………...………Vol. 12, No. 1, Spring 2023

42

enlarge, the state space grows exponentially and the

memory of the checking system could not produce,

maintain, and deal with all states, contributing no avail to

the checking process due to shortage of memory.

Approaches are initiated in recent years to moderate the

state space explosion. They include: Symbolic model

checking[6] where the model is compressed and reduced

in size using decision diagrams; Symmetry reduction[7]

which merges those model states having structural

similitude to make a smaller model; partial order

reduction[8] which simplifies the models created by

parallel ones so that by changing the execution order of

the independent procedures, one could remove certain

states; scenario-driven model checking[9] removes the

states and transitions with no effects in the models based

on graph transformation system and then sees to

verification of the scenario; Abstract methods[10] merge

the similar structures in the state space of the model and

try to reduce the size of the latter.

All the approaches above aim to diminish the model

state space and do not use any heuristics in the model

checking. Notwithstanding the reduction of state space

explosion by these methods, the shortage of memory and

low speed yet hinder the model checking procedures in

complex systems.

Although the above techniques have been almost able

to tackle the problem of state space explosion, the

accuracy and convergence speed of the proposed

solutions are still low, especially in large and complex

systems. Also, most solutions only identify deadlocks,

while more complex types of properties, such as liveness

and reachability, still remain. In this paper, by making

intelligent the model checking technique via the

supervised machine learning algorithm, it is tried to make

possible the checking of the reachability feature, besides

achieving a higher performance than previous methods. In

the suggested method, first the necessary knowledge

about applying rules (actions that change the system

mode) is acquired using the machine learning algorithm.

Afterwards, using the acquired knowledge, the model

mode space is intelligently explored.

In this paper, with the aid of machine learning

algorithm, the state space of a small model of the desired

system is completely explored. Paths leading to target

cases (promising paths) and those leading to non-target

modes are identified and placed in the training set. The

machine learning algorithm discovers and learns all the

logical relationships and knowledge contained in the

training set. With the help of the acquired knowledge, the

promising paths are identified in the large model’s mode

space, and only the promising paths are explored to check

the reachability property. By intelligently and

incompletely exploring the problem’s state space, the

suggested method overcomes the problem of state space

explosion, and increases the intelligence of the model

checking process. Compared to the heuristic methods, this

method requires less initial parameters and can detect the

target state in a shorter time. Also, it generates shorter

witnesses and needs to explore less number of states until

reaching the target. It also enjoys good accuracy

compared to the previous approaches.
The rest of the paper is organized as follows. Section 2

includes the related works. In section 3, the description of

the graph transformation system, and model checking are

fully described. Section 4 is a discussion about the

suggested method. The implementation and practical

results pertaining to the suggested method together with

those of the other methods are dealt with in Section 5.

Advantages and drawbacks of the proposed method are

discussed in Section 6. The last section is dedicated to the

conclusion.

II.RELATED WORK

Recent studies to reduce the effect of the state space

explosion problem on model checking can be divided into

three different groups. The first group includes general

and non-heuristic approaches by which all types of

properties can be checked. These approaches such as

symbolic model checking[6], partial order reduction[8],

symmetry reduction[7], scenario-driven model

checking[9] and abstraction[10] try to reduce the size of

the model’s state space regardless of the type of a given

property.

 The second group contains approaches which employ

evolutionary techniques such as GA[3], ACO[11] and

PSO[4] or simple heuristic search algorithms such as A*,

Iterative deepening A* (IDA*)[12] and beam search

(BS)[1] to check one or two types of properties by

intelligently exploring the model’s state space.

The third group includes approaches that use

knowledge discovery techniques such as data mining and

machine learning methods. Some of these approaches,

such as data mining and Bayesian networking[13, 14],

machine learning[5, 15] try to check the features of the

software system by discovering intelligent exploration

knowledge.

Smart methods have been recently employed for model

checking. A* and Iterative Deepening A*(IDA*)

algorithms are used by S. Edelkamp et al.[12] to check

the safety property in the system. In the present research,

the Hemming distance between the current state and the

goal state is regarded as the heuristic function and then

implemented in HAF-APAIN tool to assess. The results

indicate that this method is capable of checking the safety

property by exploring fewer scenarios than SPAIN. The

BDDA* approach given by S. Edelkamp and F.

Reffel[16] combines the breadth-first search algorithms

with A* algorithm to avoid the exploration of

unnecessary states. The results show a higher efficiency

of this method in comparison with the breadth-first and

depth-first search algorithms. J. Maeoka et

al.[17]introduced the DFHS approach for checking the

safety property of the system by adding a round back

option to the breadth-first search algorithm. This

approach is implemented and assessed in the checker of

JPF model. The functionality of this method is proved to

be much better than that of the breadth-first and depth-

first search methods. A heuristics is applied in A* as well

as the depth-first search methods by H. C. Estler and H.

Wehrheim[18], and E. Snippe[19] for checking

reachability in the systems modeled by graph

transformation. The heuristic function is designed on the

basis of the structural similarity between the graph

corresponding to the actual state and the ultimate state

Checking Reachability Property in Complex Concurrent Software Systems……………………Jaafar Partabian et al

43

graph. This shows more enhanced outcomes relative to

the depth-first and breadth-first search approaches. A

heuristic function is attained by S. Ziegert[20] and J. W.

Elsinga[21] aimed at reducing the size of state space

which can be applied in A* search, the depth-first search,

and hill climbing to check the reachability property. The

obtained results of this implementation indicate better

efficiency compared to the previous techniques cited by

H. C. Estler and H. Wehrheim[18] and E. Snippe[19]. An

approach to discover the deadlock error in the reaction

systems is presented by P. Godefroid and S. Khurshid[22]

where, by the help of genetic algorithm, the search is

directed towards the error states rather than the full state

space. This is implemented and tested in VERISOFT- a

search tool for the state space of the system and proved to

be able to discover the error states in a shorter time in

comparison with the random methods. A genetic-based

way of discovering the dead end error is given by R.

Yousefian et al.[3] on the basis of the graph

transformation system in which each chromosome has a

path of definite length in the state space. Applying

mutation and crossover operators in the production of

next-generation chromosomes, it aims to discover a path

corresponding to the dead end state. Such a path, if any,

would be reported as a counterexample. This attempt is

guaranteed by the test results as to be successful in certain

large models. In some huge and complex models,

however, it comes to naught. X. He et al. [23], proposed a

technique to determine the dead end error in the systems

described in terms of graph transformation. The approach

is utilized to avoid getting caught in the local optimum

trap through a combination of the bird and gravitational

algorithms in the direction of the state space search. The

estimation results in the GROOVE tool show that the

above-mentioned technique is faster and more accurate

than the depth-first and breadth-first search as well as the

genetic-based algorithms. Another so-called BAPSO way

to recognize the dead end state in the software systems is

proposed by R. Yousefian[24] which uses bat and bird

algorithms. The assessment of this method in GROOVE

proves that it has a more proper efficiency than each of

the bat and bird algorithms though having been failed in

complex systems. The ant-colony based methods are

designed by E. Alba et al.[25], L. M. Duarte et al.[26],

and B. L. Webster[27] towards discovering the error state

in the model checking process. Since the ant algorithm is

set up on the ant's quest for food in the shortest way,

generation of short-length discovering paths may be

conducive to less storage space for the states. Overall,

these approaches could have found the optimum or near-

to- optimum responses. By using the bonus-based

reinforcement learning, a new approach was proffered by

R. Behjati[28] which has been applied in checking of the

liveness property of the on-the-fly model. The checking

of the on-the-fly model, unlike the ordinary one, is carried

out simultaneously with the state space exploration. The

results are indicative of insufficient accuracy and the low

speed of this method compared to the meta-heuristic ones.

E. Pira et al.[14] give a heuristic approach based on data

mining to engage in checking safety, liveness, and

reachability properties in the complex software systems.

By discovering repetitive patterns of a small model of the

problem, they could achieve the counterexample negating

the above-mentioned properties in the large model.

Enjoying though more speed and accuracy relative to the

heuristic approaches, it hinges upon the small model of

the problem and requires setting the initial parameters in

the discovering function of repetitive patterns. By dint of

the machine learning technique, E. Pira et al.[13] initiated

a method for refutation of safety, liveness and verify of

the reachability property. Thereupon, alongside the state

space exploration, the interdependencies between the

rules governing the state space are extracted by the

Bayesian network to the purpose of the network

enhancement. Then, the discovered knowledge arisen

from the Bayesian network is applied to the exploration of

the rest of the state space. The GROOVE results represent

a good efficiency of this method compared with the

evolutionary and meta-heuristic ones. This manner

depends on the selection of the part of the state space used

in learning the dependencies by the help of Bayesian

network. Using the machine learning technique and

discovering promise paths in the small model and the

exploration of the paths in the large model thereafter, J.

Partabian et al.[5] have overcome the problem of state

space explosion. In comparison with the evolutionary and

heuristic methods, this scheme could generate the witness

with a shorter length. While managing the state space in

large and complex systems, M.Yasrebi et al.[15] achieved

a higher accuracy in discovering dead end error via the n-

gram technique. Requiring a relatively outsized space to

store the n-gram table, this method is not so optimal as

regards memory consumption.

Though the above-cited techniques have been able to

fairly manage the issue of the state space explosion, the

accuracy and speed of the convergence of the proposed

methods are yet low especially in large and complex

systems. Also, most approaches have only recognized the

dead end while more complicated features such as

reachability and liveness are still remained to be

discussed. By smartening the model checking technique

via the supervised machine learning algorithm, it is tried

in this paper to achieve a higher efficiency than the

previous methods as well as to make it possible to check

the reachability property. In our suggested method, first

the necessary knowledge is acquired about the operations

changing the state of the system using the machine

learning algorithm. Then, by the knowledge gained, the

state space of the model is traversed smartly.

In exploring the state space of systems modeled by

transformation of the graphs, the rule applied in the

current state specifies the rule that can be executed in the

next state. In other words, the law allowed in the current

situation depends only on the law applied in the preceding

one, not on the laws relating to the earlier cases. Based on

this fact, Pira et al.[29] used the Markov chain (MC) to

capture these types of dependencies and used the

Estimation of Distribution Algorithm (EDA) to improve

the quality of the MC. EDA is an evolutionary algorithm

directing the search for the optimal solution by learning

and sampling probabilistic models through the best

individuals of a population at each generation.

Experimental results confirm that this approach has a high

speed and accuracy compared to the meta-heuristic and

evolutionary methods available in the safety analysis of

systems having been formally identified through graphs

Journal of Soft Computing and Information Technology (JSCIT) ………………...………Vol. 12, No. 1, Spring 2023

44

transformation. In another paper Pira et al.[30] proposed a

two-phase model for checking the safety of systems

formally identified by graph transformation. In the first

phase, the beam-search algorithm explores the state space

in a certain number of states. In case of phase failure, the

second phase begins: in systems specified through graph

transformations, the rule applied on the previous state can

determine the rule that is performed on the next state. In

other words, the rule on current state depends only on the

rule applied to preceding one, not the ones on earlier

states. Therefore, a Markov chain (MC) is estimated to

capture dependencies between the sequence of rules

applied in the state space explored by the beam-search

algorithm. The MC is then used to explore the remainder

of the state space intelligently. To evaluate the

effectiveness of the two-phase model checking, the

authors implemented it in GROOVE, an opensource

toolkit for designing and model checking graph

transformation systems. Experimental results show that

the study of the two-phase model has a high speed and

accuracy in comparison to the existing meta-heuristic and

evolutionary methods. Rezaei et al.[31] offers a hybrid

meta-heuristic approach to cope with the problem of

complete space state search of large systems. This method

is employed in systems modeled through GTS. Using

Artificial Bee Colony and Simulated Annealing, this

approach replaces a full state space, and by producing

only a portion of the system state space, checks the safety

features and error (e.g., deadlock). Salimi et al.[32] in

their paper present a fuzzy algorithm to analyse the

reachability feature of systems modeled through GTS

with large state space. To do this, the PSO algorithm is

first developed to analyse the reachability property and

deadlock error. Then, to increase accuracy, a fuzzy

adaptive PSO algorithm is used to determine which mode

and path should be checked at each step to find the target

state. These two approaches are implemented in

GROOVE. Experimental results indicate that the

combined fuzzy approach improves the speed and

accuracy compared to the other meta-heuristic algorithms

such as GA and the PSO-GSA hybrid in the reachability

analysis. Table1: summarizes the mentioned related

works.

III. BACKGROUND

In the background section, the model transformation

techniques and the graph transformation system are

introduced and described. Model checking is one of the

most important techniques of system verification that is

carried out in the model design phase before the

implementation operation to identify and fix possible

errors. Graph transformation system is a formal method of

system modelling in which the architectural components

and system modes are modelled and displayed in the form

of graphs.

A. Graph Transformation system

While model checking, it is necessary that the

concerned system be described through a formal and

intelligible modeling language.

A GTS is defined as a triple (TG, HG, R) where TG is

a type graph, HG is a host graph and R is a set of graph

transformation rules. The type graph TG is specified by a

tuple (TGN, TGE, src, trg) in which TGN is set of node

types (vertices) and TGE includes set of edge types. src

and trg are two functions that assign the source and target

nodes to any edges[2]. The host graph HG over TG is

determined by a graph morphism type G: HG→TG that

assigns a type to every node and edge in HG. In other

words, the host graph should be an instance of the type

graph. Also, the host graph demonstrates the initial

configuration of a system. A graph transformation rule is

defined as p: L→R in which L (left-hand side) and R

(right-hand side) describe the pre-conditions and post-

conditions of the rule, respectively. The left and right

sides should conform to the type graph[5].

The rule dependence graph for a model is a directed

acyclic graph (DAG) whose vertices and edges show,

respectively, the rules of the model and the dependence

between the rules[13]. In the software described with the

graph transformation system, there exists a relationship

between the rules in the paths used in the state space. For

example, in the dining philosophers problem, initially

only the go-hungry rule can be applied to the elementary

host graph because all philosophers are in a state of

thinking. After applying the go-hungry rule to the initial

state, the get-left rule will be activated. Therefore, it can

be inferred that the get-left rule depends on the go-hungry

rule. Figure (1) shows the graph of rules dependence in

the dining philosophers problem.

The GROOVE tool has the capability of automatic

checking through generating the state space of the

problem. This tool is open source and features could be

added to it. This is used here in modeling and analysis of

software systems described by the official language of

graph transformation.

TABLE I: SUMMARY OF PREVIOUS APPROACHES AND SUGGESTED

METHOD BASED ON THE STUDIED PARAMETERS

Accuracy Runtime

Number of

explored

states until

reaching

the goal

state

Intelligence

of the

model

checking

process

 Parameter

Approach

Low
Relatively

High
High Low

Based on

GA[3]

Medium Medium
Relatively

High
Low

Based on PSO,

PSO-GSA[4]

Low High High Low
Based on A*,

IDA*[33]

Medium Low Low Medium

Based on

Datamining[13,

14]

Relatively

High
Low Low High

Based on

Machine

learning[5, 15]

High Low Low High

The proposed

Approach

(CRKD)

Fig. 1. A dependency graph for the dining philosophers problem.

go-hungry get-left get-right release-left release-right

Checking Reachability Property in Complex Concurrent Software Systems……………………Jaafar Partabian et al

45

Fig. 2. Details of modeling of Dining Philosophers problem in GROOVE.

Algorithm 1. The BFS algorithm in GROOVE

 1. Input: M : a model described by GTS;

 2. Output: S: the state space of M;

 3. GraphState state = the initial state of M;
 4. LinkedList<GraphState> stateQueue=new

LinkedList<GraphState> ();

 5. stateQueue.enqueue (state);
 6. S.nodes.add (state);

 7. while stateQueue.size () > 0 do

 8. state = stateQueue.dequeue ();
 9. foreach MatchResult match in state.getMatches () do

 10. GraphState next = state.applyMatch(match);

 11. if next != null then
 12. if !S.nodes.contains (next) then

 13. stateQueue.enqueue (next);

 14. S.nodes.add (state);
 15. end if

 16. S.edges.add (new Transition (state,match,next));

 17. end if
 18. end for

 19. end while
 20. return S;

As an example of a system modelled via GROOVE,

one can mention the Dining Philosophers problem with 2

philosophers (see Fig. 2). As it is shown, Fig. 2a is the

host graph. Also, Fig. 2b displays the go-hungry

transformation rule in which the blue double-bordered

nodes and dashed edges specify the LHS graph and the

fat green solid nodes and edges define the RHS graph. As

shown in the figure, by applying this rule on a host graph,

an edge with label think replaced by a new edge with

label hungry. The results of applying this rule on the host

graph of Fig. 2a are displayed in Fig. 2c, d. In GROOVE,

the label of a node is specified by a self-loop edge. For

example, the labels hungry and think in Fig. 2b are

specified by self-loop edge.

B. Model Checking

In model checking, first all the likely cases of the

model are traversed and then the correctness or

incorrectness of the properties is ensured. In case the

checking is done well (the state space explosion does not

occur), a counterexample/witness is developed.

The counterexamples/witnesses report certain optimal

/adverse behaviours of the system and could be used by

the experts in fixing design flaws. Among others, safety

and reachability property are important features of the

software systems checked by this technique. The safety

feature indicates that a good/bad item in an assumed

system is absolutely true/false. Since the confirmation of

this feature entails considering all the system's cases, it is

tried that this property is refuted in the sense that an error

is emerged in the state space. If so, the path from the

beginning stage of the state space towards an error is

called a counterexample. Reachability claims that there is

a case in the state space in which the supposed property

holds (goal state). In this case, the path from the

beginning situation of the state space and ending this

condition is referred to as a witness.

IV. THE PROPOSED APPROACH (CRKD)

 The CRKD is designed in three following phases.

A. First phase: Checking the Small Model State Space

At this phase, a small model of the system is created

before the state space is traversed totally for checking the

reachability property. The following operations are

implemented duly.

A small model of the system in the form of the type

graph is automatically or manually created by the

designer.

The whole state space of the small model is made into

a graph where the nodes are the states and the edges are

the rules. To distinguish the goal and non-goal states, the

state space is searched completely through the BFS

algorithm. The state in which the reachability property

holds is considered as the goal state. The BFS search is

given in Algorithm 1.

Journal of Soft Computing and Information Technology (JSCIT) ………………...………Vol. 12, No. 1, Spring 2023

46

Algorithm 3. Intelligent checking of the large model.

1. Input: Dtr: training dataset, Dte: testing dataset, LM: large model;

2. Output: a witness for reachability property;

3. Rf= Random forest (Dtr);
4. foreach tuple in Dts do

5. if Rf.predict (tuple) equal 1 then

6. explore the tuple in the LM as promising path;

7. if current state is a goal state then

8. return the path as a witness;

9. end if;

10. endif;

11. end foreach;

B. Second Phase: training and Learning

The learning set is taught to the machine learning

algorithm to discover the logical relationships and the

knowledge behind it. The operations below are carried out

at this phase.

All the paths existing in the state space graph are

extracted. Any path is generated as s0 r0 s1 r1…rl-1 sl

where the si are the states and the ri represent the rules. s0

is taken as the initial state and sl is the state traversed in

the last breadth. Removing states from each path gives a

sequence of rules. Each sequence as a training tuple along

with the situation of reachability property in the

corresponding path is labelled in the learning set so that

any path satisfying the property is labelled 1 and

otherwise it is labelled 0. The generation of the learning

set is demonstrated in Algorithm 2.

The learning set is provided to the machine learning

algorithm to discover the rules governing the state space

and to acquire the relevant knowledge (training and

learning operations). Algorithm 3 represents the learning

set generation.

C. Third Phase: Smart Exploration of the Large

Model

With due regard to the fact that checking all the paths

in the state space sparks state space explosion, we shall

choose only a few paths in a smart way by the knowledge

obtained from the second phase and call them as the

promise paths to be taken into account in the sequel. The

following operations are done in the third phase

We create the state space of the large model up to a

certain level (up to the small model's level) and then we

shall extract all the paths in the graph and place in the

learning set. (Any path is an unlabelled test tuple

The learning set is supplied to the random forest

learning algorithm to label the paths with 1 and 0 via the

knowledge acquired from the small model's state space.

Those labelled 1 are traversed as the promise paths in the

large model's state space, and if there is any goal state,

they are shown as a confirmation sign of the reachability

property. Hence, the smart and incomplete exploration of

the large model's state space makes keeping away from

the state space explosion. The smart engaging of the large

model is given in Algorithm.

D. Random Forest Learning

To enhance the accuracy, one could, among other

ways, use a combination of models rather than resorting

to just one model. The combination algorithms are those

which take a set of models and merge their outputs to the

purpose of making the ultimate learner such that its

efficiency outshines that of each of the basic learners used

in the algorithm. At last, the labels of the new records are

determined by combining the output of each basic model

used.

In the current paper, we take on the random forest

combination approach. The classifications used in the

random forest are all of the decision tree type. The

general trend for generation of T decision trees is as

follows. In each iteration (t=1, 2, …, T), a learning set Di

is created by means of replacement sampling. Since the

replacement sampling is adopted, it may be well

happened that some tuples belong in Di more than once

while some others are not present in this learning set. We

denote the number of the special features used in

determination of branches in each tree node by m which

is less than those features at hand. Among these m special

features, the one with the highest information gain is

chosen as the special feature of the branch. algorithm 4

shows the pseudocode of the random forest learning

approach.

Algorithm 4. Random forest-to create composite mode of classification.

1. Input: D, a set of N class-labeled training tuples. T, the number of tree. B, the
number of nodes;

2. Output: A composite model;

3. for t=1:T do
4. Randomly sample the train data D with replacement to produce Di

5. Grow on unpruned decision tree.

6. for b=1:B do

7. Select m variable at random from the ρ variable.

8. Pick the best variable with the highest information gain among the m.
9. Split the node into two daughter nodes.

10. end for

11. end for
12. to make a prediction at a new tuple X:
 13. return majority vote the prediction of the T tree.

Algorithm 2. The training dataset generator algorithm.

1. Input SM: a small model graph;
2. Output Dtr: training dataset;

3. foreach path in SM do

4. if reachability property has approved in the path Then
5. set label 1;

6. else

7. set label 0;
8. end if;

9. remove all state from the path;

10. add path into the Dtr;
11. end foreach;
12. return Dtr;

Checking Reachability Property in Complex Concurrent Software Systems……………………Jaafar Partabian et al

47

Feature1 Feature2 Feature3 Feature4 Class

… … ?

… … … … ?

… … … .. ?

Feature1 Feature2 Feature3 Feature4 Class

… … ?

… … … … ?

… … … .. ?

Fig. 3. Diagram of the proposed method for Dining Philosophers problem with two philosophers.

V. EXPERIMENTAL RESULT

This section is dedicated to assessing the efficiency of

the proposed method for the verification of the reachability

property. We have written the proposed approach (CRKD)

in Java and implemented it in the opensource GROOVE to

evaluate the efficiency of the method and compare it with

the other techniques. The new so-called 'machine learning'

strategy is added to GROOVE in which the input

parameters inclusive of the model itself are determined for

checking and the desired depth with the aim of exploration

restriction. At the end of the implementation, one could

observe the witness. Our the proposed method is assessed

and compared with the approaches based on heuristic

search such as: BS[1], BFS, and DFS, as well as with the

meta-heuristic and evolutionary methods like GA[3], PSO,

PSO-GSA[4] and the machine learning-based method[5].

A. Benchmark

The suggested method was checked and performed on

four well-known problems whose checking in the graph

transformation systems is impossible due to largeness of

the state space. The four problems dealt with in the present

paper are Dining Philosophers[34], Readers- Writers[35],

N-Queens, and Process life-cycle[20].

1) Dining Philosophers

In this problem, n philosophers are sitting round a

table with n forks. Each philosopher thinks, then gets

hungry and first grabs the left fork and then the right

fork to start eating. Since each fork is shared by two

adjacent philosophers, they compete to remove the

forks.

2) Readers-Writers problem

In this problem, several processes compete with each

other to access simultaneously to the common

sources. Some processes play the role of readers of

the sources and some others need to write in them.

The rule is that several readers could read a source

only if no writer is writing the source. Also, at any

given moment, only one writer can write in one

source.

3) N- Queen problem

This problem comprises N queens in an N×N

chessboard. The queens must be so arranged in the

board that they cannot guard each other. Due to the

movement of a queen horizontally, vertically, and

obliquely in the chessboard, the queens each should

be placed at different lengths, widths, and diameters

to avoid be guarded.

4) Process life-cycle problem

In the life-cycle, after creating the process, should

there is enough memory, it is loaded into memory and

waits for CPU or I/O devices. Following the

completion of the implementation, the process

releases the resources at its disposal and stops.

B. Result and Analysis

The experiments are conducted in the GROOVE tool

with the help of processor Intel® Core™ i5, with memory

3GB under Windows 8 Ultimate.

The scanning of the large model’s state space as well as recognizing

the goal state is conducted via the paths of the set which are labeled

as class 1.

Feature1 Feature 2 Feature 3 Feature 4 Class

go-hungry go-hungry get-left get-left 1
promising

path

go-hungry get-left get-right go-hungry 0
non promising

path

..

Generate training dataset of the small model

graph

Generate test dataset of the large

model graph

Discover knowledge using

Random Forest algorithm

Graph of the state space small model

Initial state

goal state

Exhaustive exploring

by BFS strategy

Extracting the

information of all paths

that starting from an

initial state

Checking a small model

Journal of Soft Computing and Information Technology (JSCIT) ………………...………Vol. 12, No. 1, Spring 2023

48

Table2 shows the most important parameters and their

suitable values for performing all approaches.

TABLE II: THE INITIAL VALUES OF PARAMETERS

Value Parameter

10 dining philosophers BS[1]

80 readers-writers

50 life-cycle

40 N-queens

50% Crossover rate GA[3]

30% Mutation rate

Middle of

chromosomes
Position of crossover

2 C1 PSO[4]

2 C2

0.8 W

Dining Philosophers Problem

The "dining philosophers" problem uses a small model

with two philosophers for learning and modelling the state

space. Here, the q-state is considered as "all philosophers

grab the left fork and wait for the right fork". Table 3

shows the implementation results of all methods to approve

the reachability property in q-state. Empirical experiments

show that all methods are capable of recognizing the goal

state in this problem. The CRKD applied for larger models

presents a superior efficiency than the other methods. The

BS algorithm traverses the state space by both depth and

surface simultaneously whence enjoying a high chance to

find the state space.

Readers-Writers Problem

As for the Readers-Writers problem, two readers and

two writers are taken up to make the small model

presuming the q-state as "all readers/writers have ended up

their processes". Owing to the fact that the state space of

this problem is broad and wide, the BS algorithm takes a

lengthy running time. The CRKD has a better functionality

in the larger models with respect to the other approaches.

Table 4 gives the outcomes of all methods for verify of the

reachability property of the q-state.

N-Queen Problem

Now, we turn to the N-queen problem for which a small

4×4 model is designed. The q-state here is read "all queens

are located in the right position". Table5 includes the

implementation results of all approaches for verify of the

reachability property of the q-state. Although only two

rules govern this problem, the state space is broad and wide

so that not a goal state can be recognized by the BS

algorithm. The proposed approach (CRKD) takes a shorter

running time especially in the larger models.

Process Life-Cycle Problem

The problem of process life-cycle works with a small

model possessing 3 processes and 3 memories. The q state

is assumed to be "all processes have completed their

implementation". Table 6 represents the implementation of

all approaches for gaining verify of the reachability.

property as regards the q state. In this problem, the goal

states are deeply situated in the state space. Excluding the

proposed method, all the other approaches are not able to

find the goal state in the models with more than 12

processes. Prior to reach the goal state, the BS algorithm

too faces lack of memory whence unsuccessful in attaining

the goal state.

TABLE III: RESULTS OF ALL METHODS FOR VERIFY OF REACHABILITY

PROPERTY IN DINING PHILOSOPHERS PROBLEM

Number of phiil

Methods

20

(sec)

25

(sec)

30

(sec)

BS[1] 116.63 342.54 873.23

GA[3] 12.38 27.31 75.62

PSO[4] 62.32 87.64 123.79

PSO-

GSA[4]
55.28 82.84 102.94

CRKD 5.52 6.17 6.96

Model
checking+

AdaBoost[5]

5.7 6.87 7.08

TABLE IV: RESULTS OF RUNNING TIME FOR ALL APPROACHES TO GET

REACHABILITY PROPERTY VERIFY IN READERS-WRITERS PROBLEM

 Number of R/W

Methods

4-R-4-W

(sec)

5-R-5-W

(sec)

6-R-6-W

(sec)

BS[1] 254 492 549

GA[3] 9.72 63.3 164

PSO[4] 9.2 38 74

PSO-

GSA[4]
13 19 53

CRKD 4.2 5.1 5.7

Model

checking+

AdaBoost[5]

6.05 8.3 10.76

TABLE V: RESULTS OF RUNNING TIME FOR ALL APPROACHES TO GAIN

REACHABILITY PROPERTY VERIFY IN N-QUEENS PROBLEM

Dimensions

Methods

8×8
(sec)

16×16
(sec)

20×20
(sec)

BS[1] Out of Memory

GA[3] 6.31 Out of Memory

PSO[4] 28.19 Out of Memory

PSO-GSA[4] 31.94 Out of Memory

CRKD 9.58 22.4 40.08

Model

checking+

AdaBoost[5]

10.73 27.3 52.41

Checking Reachability Property in Complex Concurrent Software Systems……………………Jaafar Partabian et al

49

TABLE VI: COMPARISON BETWEEN IMPLEMENTATION RESULTS TO GET

REACHABILITY PROPERTY IN PROCESS LIFE-CYCLE PROBLEM

 Process life cycle

Methods

10 Process-

10 Memory

(sec)

12 Process-

12 Memory

(sec)

15 Process-

15 Memory

(sec)

BS[1] Out of Memory

GA[3] 7.49 14.25
Out of

Memory

PSO[4] 6.17 26.43
Out of

Memory

PSO-

GSA[4]
46.32 312.34

Out of

Memory

CRKD 8.57 13.86 17.13

Model

checking+

AdaBoost[5]

11.35 17.7 25.68

In the present paper, we consider the number of explored

states in order to reach the goal state in the state space as

another criterion comparing the efficiencies of the various

approaches. To this purpose, we have chosen an example

for each problem and the corresponding results are given in

Table 7. As observed in Table 7, in most models, the

suggested method requires exploring of fewer number of

states.

TABLE VII: COMPARISON OF THE NUMBER OF EXPLORED STATES BY

ALL METHODS FOR REACHABILITY PROPERTY

 Methods

Model

GA[3] PSO[4]
PSO-

GSA[4]
BS[1]

Model

checking+

AdaBoost

[5]

CRKD

Dining

philosophers

(30

philosophers

)

34542 43212 39854 8670 2854 2679

Readers-

writers

(5-R-5-W)

75376 17531 13931 1860 2896 2187

Process life

cycle

(20-Process-

8-Memorys)

6543 26543 43234 21175 1532 1083

N-

Queen(8×8)
4623 3632 3960

Not

found
1750 1153

Comparison of maximum, minimum, average run time

and depth of reaching the first goal state in the suggested

method with approaches based on Bayesian optimizer[2]

and the method based on machine learning[5] are given in

table 8.

The accuracy of the suggested method compared to

some other approaches is also shown in figure 4.

According to the obtained result, the proposed method can

find the goal state in less depth and time. The accuracy of

the CRKD is also acceptable compared to other

approaches.

TABLE VIII: COMPARISON OF THE MAXIMUM/MINIMUM/AVERAGE RUN TIME AND

DEPTH OF FIRST FOUND GOAL STATE BY SOME APPROACHES

 Method

 Model

BOAcl2[2] BOAcln[2] BOActp[2]
Model checking+

Ada boost[5]
CRKD

m
ax

im
u
m

/m
in

im
u
m

/

av
er

ag
e

ru
n
ti

m
e

d
ep

th
 o

f
fi

rs
t

fo
u
n
d

g
o
al

 s
ta

te

m
ax

im
u
m

/m
in

im
u
m

/

av
er

ag
e

ru
n
ti

m
e

d
ep

th
 o

f
fi

rs
t

fo
u
n
d

g
o
al

 s
ta

te

m
ax

im
u
m

/m
in

im
u
m

/

av
er

ag
e

ru
n
ti

m
e

d
ep

th
 o

f
fi

rs
t

fo
u
n
d

g
o
al

 s
ta

te

m
ax

im
u
m

/m
in

im
u
m

/

av
er

ag
e

ru
n
ti

m
e

d
ep

th
 o

f
fi

rs
t

fo
u
n
d

g
o
al

 s
ta

te

m
ax

im
u
m

/m
in

im
u
m

/

av
er

ag
e

ru
n
ti

m
e

d
ep

th
 o

f
fi

rs
t

fo
u
n
d

g
o
al

 s
ta

te

Dining

philosophers

(30

philosophers)

27.56

±8.39

106

45.36

±14.94

177
46.18

±17.43
178 6.9±2.94 60 5.93±1.87 60

Readers-

writers (5R-

5W)

5.89

±1.72
62

6.6

±1.95
67

7.15

±2.9
68 7.89±2.18 65 5.48±1.42 56

Process life
cycle

(15Process -

15Memorys)

1.89±0.16 45
Not

found

Not

found

Not

found

Not

found
3.69±0.71 40 2.17±1.25 42

N-Queen
(16×16)

115.64±

2.02
64

Not

found

Not

found

Not

found

Not

found
68.33±3.94 57 59.86±3.73 53

VI. ADVANTAGES AND LIMITATIONS OF

THE PROPOSED APPROACH

The proposed method has advantages in comparison

with the other approaches. For instance, thanks to the usage

of the machine learning algorithm, the method does the

checking of the model in an incomplete and more smartly

fashion to keep away from the state space explosion. To

begin the checking operations, it also requires less initial

parameters. The proposed approach has a higher

performance speed, explores a less number of states in the

state space of the model, and generates a shorter witness.

The proposed method suffers a number of limitations as

well. To mention some, its accuracy depends drastically on

the small model of the problem the generation of which is

difficult in some problems. The efficiency of the approach

is extremely reliant on the capability of the machine

learning algorithm in discovering knowledge from the

small model's state space. Another disadvantage could be

that this technique is not able to use the small model's

knowledge to manage the large model's state space in

Fig. 4. Comparing the accuracy of the approaches in the dining

philosopher's problem with 10 philosophers

0%

100%

Accuracy

Journal of Soft Computing and Information Technology (JSCIT) ………………...………Vol. 12, No. 1, Spring 2023

50

dynamic environments where the governing conditions are

frequently changing.

VII.CONCLUSION

Model checking is an automatic and appropriate way to

validate the software systems. One of the most widely-used

formal modelling ideas in this respect is graph

transformation system. The state space explosion is the

most frequent trouble which the real and complicated

systems are mainly encountered. In this article, we have

given an approach that could traverse the state space of the

model in an incomplete and smart way and does not

undergo the state space explosion. According to our

proposed approach, a small model is created in the system

at the outset. All the paths existing in the graph of the small

model's state space are completely traversed. Those ending

in the goal state are labelled 1 and the rest are marked 0 in

the learning set. Then, the learning set is taught to the

random forest learning algorithm in order for discovering

the logical relationships between the paths and their labels.

Finally, the knowledge acquired during recognizing the

promise paths of the large model is used to reach the goal

state. The proposed method is also made used of to check

the reachability property in the large and complicated

systems. It is implemented in the GROOVE tool in Java

language and compared to the heuristic, meta-heuristic, and

evolutionary approaches. Doing the model checking in a

more smartly manner, the proposed method needs less

regulated parameters and shorter average time to perform.

It generates the witness with a shorter length and explores

less number of states in the state space than the other

approaches. Dependence on the capability of the machine

learning algorithm is among the restrictions hampering the

proposed approach. In systems with dynamic state space

undertaking no set rules, the approach retains no suitable

efficiency. The proposed method can overcome the

problem of state space explosion by intelligently and

incompletely exploring the state space. This method also

increases the intelligence of the model checking process.

The average run time is less compared to previous

methods. To find the target mode, there is need to explore

fewer modes. Also, this method produces shorter

witnesses, and compared to the other methods, it has good

accuracy.

In the future research works, other properties in the

model checking technique such as liveness can be

considered. Deep learning algorithms and Markov's hidden

model can also be used for future work.

REFERENCES

[1] Groce, A., et al., Heuristics for model checking Java programs.

International Journal on Software Tools for Technology Transfer, 2004.

6(4): p. 260-276 .

[2] Pira, E., et al., Using evolutionary algorithms for reachability analysis
of complex software systems specified through graph transformation.

Reliability Engineering & System Safety, 2019. 191: p. 106577 .

[3] Yousefian, R., et al., A heuristic solution for model checking graph

transformation systems. Applied Soft Computing, 2014. 24: p. 169-180 .

[4] Rafe, V., et al., A meta-heuristic solution for automated refutation of

complex software systems specified through graph transformations.

Applied Soft Computing, 2015. 33: p. 136-149 .

[5] Partabian, J., et al., An approach based on knowledge exploration for

state space management in checking reachability of complex software
systems. Soft Computing, 2020. 24(10): p. 7181-7196 .

[6] Zhang, H., et al. A full symbolic reachability analysis algorithm of

timed automata based on BDD. in 2015 IEEE Twelfth International
Symposium on Autonomous Decentralized Systems. 2015. IEEE .

[7] Lluch-Lafuente, A., Symmetry reduction and heuristic search for error

detection in model checking. 2003 .

[8] Lluch-Lafuente, A., et al. Partial order reduction in directed model

checking. in International SPIN Workshop on Model Checking of

Software. 2002. Springer .

[9] Rafe, V., Scenario-driven analysis of systems specified through graph

transformations. Journal of Visual Languages & Computing, 2013. 24(2):

p. 136-145 .

[10] Rensink, A ,.et al. Pattern-based graph abstraction. in International

Conference on Graph Transformation. 2012. Springer .

[11] Alba, E., et al. Finding safety errors with ACO. in Proceedings of the
9th annual conference on Genetic and evolutionary computation. 2007 .

[12] Edelkamp, S., et al., Protocol verification with heuristic search. 2001:

Bibliothek der Universität Konstanz .

[13] Pira, E., et al., Deadlock detection in complex software systems

specified through graph transformation using Bayesian optimization

algorithm. Journal of Systems and Software, 2017. 131: p. 181-200 .

[14] Pira, E., et al., EMCDM: Efficient model checking by data mining

for verification of complex software systems specified through

architectural styles. Applied Soft Computing, 2016. 49 :p. 1185-1201 .

[15] Yasrebi, M., et al., An efficient approach to state space management

in model checking of complex software systems using machine learning

techniques. Journal of Intelligent & Fuzzy Systems, 2020. 38(2): p. 1761-
1773 .

[16] Edelkamp, S ,.et al. OBDDs in heuristic search. in Annual

Conference on Artificial Intelligence. 1998. Springer .

[17] Maeoka, J., et al., Depth-first heuristic search for software model

checking, in Computer and Information Science 2015. 2016, Springer. p.

75-96 .

[18] Estler, H.-C., et al. Heuristic search-based planning for graph

transformation systems. in ICAPS workshop on knowledge engineering

for planning and scheduling (KEPS 2011). 2011 .

[19] Snippe, E. Using heuristic search to solve planning problems in

GROOVE .in 14th Twente Student Conference on IT, University of

Twente. Available at fmt. cs. utwente. nl/education/bachelor/73. 2011 .

[20] Ziegert, S., Graph transformation planning via abstraction. arXiv

preprint arXiv:1407.7933, 2014 .

[21] Elsinga, J.W., On a framework for domain independent heuristics in
graph transformation planning. 2016, University of Twente .

[22] Godefroid, P., et al., Exploring very large state spaces using genetic

algorithms. International Journal on Software Tools for Technology
Transfer, 2004. 6(2): p. 117-127 .

[23] He, X., et al. A metamodel for the notation of graphical modeling
languages. in 31st Annual International Computer Software and

Applications Conference (COMPSAC 2007). 2007. IEEE .

[24] Yousefian, R., et al., A greedy algorithm versus metaheuristic
solutions to deadlock detection in Graph Transformation Systems. Journal

of Intelligent & Fuzzy Systems, 2016. 31(1): p. 137-149 .

[25] Alba, E., et al. Finding deadlocks in large concurrent java programs
using genetic algorithms .in Proceedings of the 10th annual conference on

Genetic and evolutionary computation. 2008 .

Checking Reachability Property in Complex Concurrent Software Systems……………………Jaafar Partabian et al

51

[26] Duarte, L.M., et al., Model checking the ant colony optimisation, in

Distributed, parallel and biologically inspired systems. 2010, Springer. p.

221-232 .

[27] Webster, B.L., Solving combinatorial optimization problems using a

new algorithm based on gravitational attraction. 2004: Florida Institute of
Technology .

[28] Behjati, R., et al. Bounded rational search for on-the-fly model

checking of LTL properties. in International Conference on Fundamentals
of Software Engineering. 2009. Springer .

[29] Pira, E., Using Markov Chain based Estimation of Distribution

Algorithm for Model-based Safety Analysis of Graph Transformation.
Journal of Computer Science and Technology, 2021. 36(4): p. 839-855 .

[30] Pira, E., Using knowledge discovery to propose a two-phase model

checking for safety analysis of graph transformations. Software Quality
Journal, 2021: p. 1-28 .

[31] Rezaee, N., et al., A hybrid meta-heuristic approach to cope with

state space explosion in model checking technique for deadlock freeness.

Journal of AI and Data Mining, 2020. 8(2): p. 189-199 .

[32] Salimi, N., et al., Fuzzy particle swarm optimization algorithm

(NFPSO) for reachability analysis of complex software systems. 2020 .

[33] Edelkamp, S., et al., Directed explicit-state model checking in the

validation of communication protocols. International journal on software

tools for technology transfer, 2004. 5(2): p. 247-267 .

[34] Schmidt, Á. Model checking of visual modeling languages. in

CONFERENCE OF PHD STUDENTS IN COMPUTER SCIENCE. 2004 .

[35] Hendrik Hausmann, J., Dynamic Meta Modeling: A Semantics
Description Technique for Visual Modeling Languages. 2005 .

 مجله علمی پژوهشی رایانش نرم و فناوری اطلاعات

 دانشگاه صنعتی نوشیروانی بابل

 jscit.nit.ac.ir صفحه مجله:

 51-41، صفحه 1402بهار ، 1، شماره 12جلد

 02/11/1400 :رشیپذ ،11/07/1400 :یبازنگر ،05/07/1399 :افتیدر

وارسی ویژگی دسترس پذیری در سیستم های نرم افزاری پیچیده و همروند با

 رویکرد کشف دانش

 ،5 انینجات صمد ،4نیپرو حمید ، 3رافع وحید *2کرم الله باقری فرد ،1 انیپرتاب جعفر

 ایران. ،لامرد، اسلامی آزاد دانشگاه، لامرد واحد، کامپیوتر مهندسی دانشکده -1

 .ایران ،یاسوج ،اسلامی آزاد دانشگاه ،یاسوج واحد ،فنی و مهندسی دانشکده -*2

 ایران. ،اراک ،اراک دانشگاه ر،کامپیوت مهندسی گروه ،مهندسی و فنی دانشکده -3

 ایران. ،ممسنی نورآباد ،اسلامی آزاد دانشگاه ،ممسنی نورآباد واحد ر،کامپیوت مهندسی دانشکده -4

 .ایران، یاسوج، دانشگاه آزاد اسلامی، واحد یاسوج ،گروه مهندسی برق -5

1jaafar_partabian@yahoo.com,2*k.bagheri@iauyasooj.ac.ir,3v-rafe@araku.ac.ir, 4parvinhamid@gmail.com,
5Samad.nej.2007@gmail.com.

 ایران ،اراک ،اراک دانشگاه ر،کامپیوت مهندسی گروه ،مهندسی و فنی دانشکده نویسنده مسوول:آدرس *

 هایو بررسی همه حالت است که با تولید افزارینرمی هاستمیس دییتأجهت وارسی مدل، روشی رسمی و مؤثرتکنیک - چکیده

ی پیچیده و بزرگ که دارای فضای هاستمیسپردازد. چالش اساسی وارسی مدل در افزار به تحلیل آن میممکنِ مدلی از سیستم نرم

های ممکن(است. الگوریتم ، مشکل انفجار فضای حالت)کمبود حافظه در تولید همه حالتباشندیمحالت گسترده و یا نامحدود

پردازد. درروش است با انتخاب تعداد محدودی مسیر امیدبخش به مقابله با این مشکل می که قادر به کشف دانش جنگل تصادفی

مدل فضای حالت (ایجاد و ازGTSشنهادی، ابتدا مدل کوچکی از سیستم با استفاده از زبان رسمی سیستم توصیف گراف)پی

تا شودیمدر اختیار الگوریتم جنگل تصادفی قرار داده . مجموعه آموزشی تولیدشدهشودیمایجاد ای آموزشیکوچک، مجموعه

کامل فضایِ حالتِ هوشمند و غیر آمده جهت پیمایشدستشوند. سپس از دانش بهآن شناسایی و کشف روابط منطقی موجود در

ی تبدیل هاستمیسباز برای طراحی و بررسی مدل که از ابزار متن GROOVE . رویکرد پیشنهادی در ابزارشودیممدلِ بزرگ استفاده

افزایش هوشمندی فرایند وارسی مدل، نیاز به تنظیم روش پیشنهادی علاوه بر که دهندیمگراف است، اجراشده است. نتایج نشان

پارامترهای اولیه کمتری دارد. رویکرد پیشنهادی بر روی چند مسئله شناخته شده اجرا شده است. نتایج آزمایش های تجربی نشان

عملکرد بهتری قتهای پیمایش شده و ددهند روش پیشنهادی در مقایسه با روش های قبلی متوسط زمان اجرا، تعداد حالتمی

 دارد.

 افزاری، کشف دانش، انفجار فضای حالت، وارسی مدل های نرمیید سیستمتأ -ی کلیدیهاواژه

http://www.jscit.nit.ac.ir/
mailto:jaafar_partabian@yahoo.com
mailto:k.bagheri@iauyasooj.ac.ir,3v-rafe@araku.ac.ir
mailto:parvinhamid@gmail.com
mailto:Samad.nej.2007@gmail.com

