فراهم‌سازی چندهدفه‌ی برنامه‌های کاربردی اینترنت اشیاء با تأخیر و هزینه‌ی کمینه در رایانش مهی

نوع مقاله : مقاله پژوهشی فارسی

نویسندگان

1 گروه مهندسی نرم‌افزار، دانشکده‌ی مهندسی کامپیوتر، دانشگاه اصفهان، اصفهان، ایران

2 گروه مهندسی نرم افزار، دانشکده مهندسی کامپیوتر، دانشگاه اصفهان، اصفهان، ایران.

چکیده

اینترنت اشیاء موقعیت‌های فراوانی برای برنامه‌های کاربردی تازه ظهور یافته مانند ماشین‌های خودکار و برنامه‌های کاربردی شهر هوشمند فراهم ساخته است. با ظهور برنامه‌های کاربردی اینترنت اشیاء که در مقایسه با برنامه‌های کاربردی موجود نیازهای متفاوتی دارند، رایانش ابری توانایی برآورده ساختن نیازهای این برنامه‌های کاربردی نوظهور را نخواهد داشت. رایانش مهی به‌عنوان یک مدل محاسباتی به‌منظور برآورده ساختن نیازهای برنامه‌های کاربردی اینترنت اشیاء معرفی شد. بیشتر تلاش‌های انجام‌شده در تحقیق‌ها، کمینه یا بیشینه کردن یک هدف در مسائل مختلف مدیریت منابع در رایانش مهی است که می‌تواند به دیگر خروجی‌های مهم تصمیم‌گیری آسیب بزند. در این مقاله یک چهارچوب چندهدفه برای یافتن گره‌های مه مناسب به‌منظور قرار دادن برنامه‌های کاربردی اینترنت اشیاء پیشنهاد شده است. مسئله‌ی فراهم‌سازی پویای سرویس‌ها در رایانش مهی به‌عنوان یک مدل برنامه‌ریزی خطی عدد صحیح آمیخته فرمول‌بندی شده است و روش برنامه‌ریزی وزن‌دار آرمانی برای حل این مسئله‌ی چندهدفه به‌منظور برقراری مصالحه‌های گوناگون میان هزینه‌ی منابع و تأخیر برنامه‌های کاربردی به کار گرفته شده است. علاوه بر این، با استفاده از نمودار جبهه‌ی پَرِتو و شبیه‌سازی‌های مختلف، اهمیت استفاده از روش‌های چندهدفه برای فراهم‌سازی سرویس‌ها در رایانش مهی نشان داده شده است.

کلیدواژه‌ها


[1]               K. Bachmann, "Design and implementation of a fog computing framework," Master’s thesis, Vienna University of Technology (TU Wien), Vienna, Austria, 2017.
[2]               R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, "Quality of Experience (QoE)-aware placement of applications in Fog computing environments," Journal of Parallel and Distributed Computing, 2018.
[3]               A. V. Dastjerdi and R. Buyya, "Fog computing: Helping the Internet of Things realize its potential," Computer, vol. 49, pp. 112-116, 2016.
[4]               A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H. C. Cankaya, et al., "FogPlan: A Lightweight QoS-aware Dynamic Fog Service Provisioning Framework," IEEE Internet of Things Journal, 2019.
[5]               R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xiang, et al., "Fog Computing: survey of trends, architectures, requirements, and research directions," IEEE access, vol. 6, pp. 47980-48009, 2018.
[6]               A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, "On reducing iot service delay via fog offloading," IEEE Internet of Things Journal, 2018.
[7]               O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner, "Optimized IoT service placement in the fog," Service Oriented Computing and Applications, vol. 11, pp. 427-443, 2017.
[8]               Q. T. Minh, D. T. Nguyen, A. Van Le, H. D. Nguyen, and A. Truong, "Toward service placement on fog computing landscape," in 2017 4th NAFOSTED conference on information and computer science, 2017, pp. 291-296.
[9]               V. B. C. Souza, W. Ramírez, X. Masip-Bruin, E. Marín-Tordera, G. Ren, and G. Tashakor, "Handling service allocation in combined fog-cloud scenarios," in 2016 IEEE international conference on communications (ICC), 2016, pp. 1-5.
[10]             S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung, "Dynamic service placement for mobile micro-clouds with predicted future costs," IEEE Transactions on Parallel and Distributed Systems, vol. 28, pp. 1002-1016, 2016.
[11]             Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, "A multi-objective ant colony system algorithm for virtual machine placement in cloud computing," Journal of Computer and System Sciences, vol. 79, pp. 1230-1242, 2013.
[12]             M.-H. Malekloo, N. Kara, and M. El Barachi, "An energy efficient and SLA compliant approach for resource allocation and consolidation in cloud computing environments," Sustainable Computing: Informatics and Systems, vol. 17, pp. 9-24, 2018.
[13]             S. Ghasemi-Falavarjani, M. Nematbakhsh, and B. S. Ghahfarokhi, "Context-aware multi-objective resource allocation in mobile cloud," Computers & Electrical Engineering, vol. 44, pp. 218-240, 2015.
[14]             C. Guerrero, I. Lera, and C. Juiz, "Genetic algorithm for multi-objective optimization of container allocation in cloud architecture," Journal of Grid Computing, vol. 16, pp. 113-135, 2018.
[15]             R. Jena, "Multi objective task scheduling in cloud environment using nested PSO framework," Procedia Computer Science, vol. 57, pp. 1219-1227, 2015.
[16]             B. Shrimali and H. Patel, "Multi-objective optimization oriented policy for performance and energy efficient resource allocation in Cloud environment," Journal of King Saud University-Computer and Information Sciences, 2017.
[17]             C. Guerrero, I. Lera, and C. Juiz, "Resource optimization of container orchestration: a case study in multi-cloud microservices-based applications," The Journal of Supercomputing, vol. 74, pp. 2956-2983, 2018.
[18]             Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, and A. Y. Zomaya, "A dynamic tradeoff data processing framework for delay-sensitive applications in Cloud of Things systems," Journal of Parallel and Distributed Computing, vol. 112, pp. 53-66, 2018.
[19]             K. Kaur, T. Dhand, N. Kumar, and S. Zeadally, "Container-as-a-service at the edge: Trade-off between energy efficiency and service availability at fog nano data centers," IEEE wireless communications, vol. 24, pp. 48-56, 2017.
[20]             A. Majd, G. Sahebi, M. Daneshtalab, J. Plosila, and H. Tenhunen, "Hierarchal placement of smart mobile access points in wireless sensor networks using fog computing," in 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), 2017, pp. 176-180.
[21]             L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, "Multiobjective optimization for computation offloading in fog computing," IEEE Internet of Things Journal, vol. 5, pp. 283-294, 2017.
[22]             Y. Sun, F. Lin, and H. Xu, "Multi-objective optimization of resource scheduling in Fog computing using an improved NSGA-II," Wireless Personal Communications, vol. 102, pp. 1369-1385, 2018.
[23]             C. C. Byers, "Architectural imperatives for fog computing: Use cases, requirements, and architectural techniques for fog-enabled iot networks," IEEE Communications Magazine, vol. 55, pp. 14-20, 2017.
[24]             E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwälder, "Incremental deployment and migration of geo-distributed situation awareness applications in the fog," in Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems, 2016, pp. 258-269.
[25]             G. Lee, W. Saad, and M. Bennis, "An online optimization framework for distributed fog network formation with minimal latency," IEEE Transactions on Wireless Communications, vol. 18, pp. 2244-2258, 2019.
[26]             H. R. Arkian, A. Diyanat, and A. Pourkhalili, "MIST: Fog-based data analytics scheme with cost-efficient resource provisioning for IoT crowdsensing applications," Journal of Network and Computer Applications, vol. 82, pp. 152-165, 2017.
[27]             J. Ren, G. Yu, Y. He, and G. Y. Li, "Collaborative Cloud and Edge Computing for Latency Minimization," IEEE Transactions on Vehicular Technology, vol. 68, pp. 5031-5044, 2019.
[28]             L. Yang, J. Cao, G. Liang, and X. Han, "Cost aware service placement and load dispatching in mobile cloud systems," IEEE Transactions on Computers, vol. 65, pp. 1440-1452, 2016.
[29]             S. Sobhanayak, A. K. Turuk, and B. Sahoo, "Task scheduling for cloud computing using multi-objective hybrid bacteria foraging algorithm," Future Computing and Informatics Journal, 2018.
[30]             D. Gonçalves, K. Velasquez, M. Curado, L. Bittencourt, and E. Madeira, "Proactive virtual machine migration in fog environments," in 2018 IEEE Symposium on Computers and Communications (ISCC), 2018, pp. 00742-00745.
[31]             A. Brogi, S. Forti, and A. Ibrahim, "Optimising QoS-assurance, Resource Usage and Cost of Fog Application Deployments," presented at the Communications in Computer and Information Science, 2018.
[32]             K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, et al., "The impact of mobile multimedia applications on data center consolidation," in 2013 IEEE international conference on cloud engineering (IC2E), 2013, pp. 166-176.
[33]             D. Jones and M. Tamiz, Practical goal programming vol. 141: Springer, 2010.
[34]             F. S. Hillier, Introduction to operations research: Tata McGraw-Hill Education, 2012.
[35]             A. Yousefpour, G. Ishigaki, and J. P. Jue, "Fog computing: Towards minimizing delay in the internet of things," in 2017 IEEE international conference on edge computing (EDGE), 2017, pp. 17-24.
[36]             A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, and C. Z. Patrikakis, "A cooperative fog approach for effective workload balancing," IEEE Cloud Computing, vol. 4, pp. 36-45, 2017.
[37]             O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, "Towards qos-aware fog service placement," in 2017 IEEE 1st international conference on Fog and Edge Computing (ICFEC), 2017, pp. 89-96.